Skip to main content
Log in

An automated computed tomography score for the cystic fibrosis lung

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To develop an automated density-based computed tomography (CT) score evaluating high-attenuating lung structural abnormalities in patients with cystic fibrosis (CF).

Methods

Seventy adult CF patients were evaluated. The development cohort comprised 17 patients treated with ivacaftor, with 45 pre-therapeutic and follow-up chest CT scans. Another cohort of 53 patients not treated with ivacaftor was used for validation. CT-density scores were calculated using fixed and adapted thresholds based on histogram characteristics, such as the mode and standard deviation. Visual CF-CT score was also calculated. Correlations between the CT scores and forced expiratory volume in 1 s (FEV1% pred), and between their changes over time were assessed.

Results

On cross-sectional evaluation, the correlation coefficients between FEV1%pred and the automated scores were slightly lower to that of the visual score in the development and validation cohorts (R = up to -0.68 and -0.61, versus R = -0.72 and R = -0.64, respectively). Conversely, the correlation to FEV1%pred tended to be higher for automated scores (R = up to -0.61) than for visual score (R = -0.49) on longitudinal follow-up. Automated scores based on Mode + 3 SD and Mode +300 HU showed the highest cross-sectional (R = -0.59 to -0.68) and longitudinal (R = -0.51 to -0.61) correlation coefficients to FEV1%pred.

Conclusions

The developed CT-density score reliably quantifies high-attenuating lung structural abnormalities in CF.

Key Points

• Automated CT score shows moderate to good cross-sectional correlations with FEV 1 %pred .

• CT score has potential to be integrated into the standard reporting workflow

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

FEV1 :

Forced expiratory volume in 1 s

MLD:

Mean lung density

References

  1. Tepper LA, Caudri D, Utens EMWJ et al (2014) Tracking CF disease progression with CT and respiratory symptoms in a cohort of children aged 6-19 years. Pediatr Pulmonol 49:1182–1189. https://doi.org/10.1002/ppul.22991

    Article  PubMed  Google Scholar 

  2. O’Connor OJ, Vandeleur M, McGarrigle AM et al (2010) Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients. Radiology 257:820–829. https://doi.org/10.1148/radiol.10100278

    Article  PubMed  Google Scholar 

  3. Miéville FA, Berteloot L, Grandjean A et al (2013) Model-based iterative reconstruction in pediatric chest CT: assessment of image quality in a prospective study of children with cystic fibrosis. Pediatr Radiol 43:558–567. https://doi.org/10.1007/s00247-012-2554-4

    Article  PubMed  Google Scholar 

  4. Ernst CW, Basten IA, Ilsen B et al (2014) Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels. Radiology 273:597–605. https://doi.org/10.1148/radiol.14132201

    Article  PubMed  Google Scholar 

  5. Wainwright CE, Vidmar S, Armstrong DS et al (2011) Effect of bronchoalveolar lavage-directed therapy on Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: a randomized trial. JAMA 306:163–171. https://doi.org/10.1001/jama.2011.954

    Article  CAS  PubMed  Google Scholar 

  6. Brody AS, Klein JS, Molina PL et al (2004) High-resolution computed tomography in young patients with cystic fibrosis: distribution of abnormalities and correlation with pulmonary function tests. J Pediatr 145:32–38. https://doi.org/10.1016/j.jpeds.2004.02.038

    Article  PubMed  Google Scholar 

  7. Cademartiri F, Luccichenti G, Palumbo AA et al (2008) Predictive value of chest CT in patients with cystic fibrosis: a single-center 10-year experience. AJR Am J Roentgenol 190:1475–1480. https://doi.org/10.2214/AJR.07.3000

    Article  PubMed  Google Scholar 

  8. Brody AS, Sucharew H, Campbell JD et al (2005) Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am J Respir Crit Care Med 172:1128–1132. https://doi.org/10.1164/rccm.200407-989OC

    Article  PubMed  Google Scholar 

  9. Loeve M, Hop WCJ, de Bruijne M et al (2012) Chest computed tomography scores are predictive of survival in patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med 185:1096–1103. https://doi.org/10.1164/rccm.201111-2065OC

    Article  PubMed  Google Scholar 

  10. Kilcoyne A, Lavelle LP, McCarthy CJ et al (2016) Chest CT abnormalities and quality of life: relationship in adult cystic fibrosis. Ann Transl Med 4:87. https://doi.org/10.21037/atm.2016.03.08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loeve M, Gerbrands K, Hop WC et al (2011) Bronchiectasis and pulmonary exacerbations in children and young adults with cystic fibrosis. Chest 140:178–185. https://doi.org/10.1378/chest.10-1152

    Article  PubMed  Google Scholar 

  12. Calder AD, Bush A, Brody AS, Owens CM (2014) Scoring of chest CT in children with cystic fibrosis: state of the art. Pediatr Radiol 44:1496–1506. https://doi.org/10.1007/s00247-013-2867-y

    Article  PubMed  Google Scholar 

  13. Ramsey BW, Davies J, McElvaney NG et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672. https://doi.org/10.1056/NEJMoa1105185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wainwright CE, Elborn JS, Ramsey BW et al (2015) Lumacaftor–Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373:220–231. https://doi.org/10.1056/NEJMoa1409547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chassagnon G, Hubert D, Fajac I et al (2016) Long-term computed tomographic changes in cystic fibrosis patients treated with ivacaftor. Eur Respir J 48:248–252. https://doi.org/10.1183/13993003.01918-2015

    Article  CAS  Google Scholar 

  16. Gevenois PA, De Vuyst P, de Maertelaer V et al (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192. https://doi.org/10.1164/ajrccm.154.1.8680679

    Article  CAS  PubMed  Google Scholar 

  17. Goris ML, Zhu HJ, Blankenberg F et al (2003) An automated approach to quantitative air trapping measurements in mild cystic fibrosis. Chest 123:1655–1663

    Article  Google Scholar 

  18. Goris ML, Zhu HJ, Robinson TE (2007) A critical discussion of computer analysis in medical imaging. Proc Am Thorac Soc 4:347–349. https://doi.org/10.1513/pats.200701-014HT

    Article  PubMed  Google Scholar 

  19. Bonnel A-S, Song SM-H, Kesavarju K et al (2004) Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 38:396–405. https://doi.org/10.1002/ppul.20091

    Article  PubMed  Google Scholar 

  20. DeBoer EM, Swiercz W, Heltshe SL et al (2014) Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 145:593–603. https://doi.org/10.1378/chest.13-0588

    Article  PubMed  Google Scholar 

  21. Loeve M, Rosenow T, Gorbunova V et al (2015) Reversibility of trapped air on chest computed tomography in cystic fibrosis patients. Eur J Radiol 84:1184–1190. https://doi.org/10.1016/j.ejrad.2015.02.011

    Article  PubMed  Google Scholar 

  22. O’Connell OJ, McWilliams S, McGarrigle A et al (2012) Radiologic imaging in cystic fibrosis: cumulative effective dose and changing trends over 2 decades. Chest 141:1575–1583. https://doi.org/10.1378/chest.11-1972

    Article  PubMed  Google Scholar 

  23. Palumbo AA, Luccichenti G, Belgrano M et al (2007) Three-dimensional quantitative assessment of lung parenchyma in cystic fibrosis: preliminary results. Radiol Med 112:21–30. https://doi.org/10.1007/s11547-007-0117-9

    Article  CAS  PubMed  Google Scholar 

  24. Wielpütz MO, Eichinger M, Weinheimer O et al (2013) Automatic airway analysis on multidetector computed tomography in cystic fibrosis: correlation with pulmonary function testing. J Thorac Imaging 28:104–113. https://doi.org/10.1097/RTI.0b013e3182765785

    Article  PubMed  Google Scholar 

  25. Montaudon M, Berger P, Cangini-Sacher A et al (2007) Bronchial measurement with three-dimensional quantitative thin-section CT in patients with cystic fibrosis. Radiology 242:573–581. https://doi.org/10.1148/radiol.2422060030

    Article  PubMed  Google Scholar 

  26. de Jong PA, Nakano Y, Hop WC et al (2005) Changes in airway dimensions on computed tomography scans of children with cystic fibrosis. Am J Respir Crit Care Med 172:218–224. https://doi.org/10.1164/rccm.200410-1311OC

    Article  PubMed  Google Scholar 

  27. Robinson PJ, Kreel L (1979) Pulmonary tissue attenuation with computed tomography: comparison of inspiration and expiration scans. J Comput Assist Tomogr 3:740–748

    Article  CAS  Google Scholar 

  28. Levi C, Gray JE, McCullough EC, Hattery RR (1982) The unreliability of CT numbers as absolute values. AJR Am J Roentgenol 139:443–447. https://doi.org/10.2214/ajr.139.3.443

    Article  CAS  PubMed  Google Scholar 

  29. Yuan R, Mayo JR, Hogg JC et al (2007) The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest 132:617–623. https://doi.org/10.1378/chest.06-2325

    Article  PubMed  Google Scholar 

  30. Kemerink GJ, Lamers RJ, Thelissen GR, van Engelshoven JM (1995) Scanner conformity in CT densitometry of the lungs. Radiology 197:749–752. https://doi.org/10.1148/radiology.197.3.7480750

    Article  CAS  PubMed  Google Scholar 

  31. Perhomaa M, Jauhiainen J, Lähde S et al (2000) CT lung densitometry in assessing intralobular air content. An experimental and clinical study. Acta Radiol 41:242–248

    Article  CAS  Google Scholar 

  32. Parr DG, Stoel BC, Stolk J et al (2004) Influence of calibration on densitometric studies of emphysema progression using computed tomography. Am J Respir Crit Care Med 170:883–890. https://doi.org/10.1164/rccm.200403-326OC

    Article  PubMed  Google Scholar 

  33. de Lavernhe I, Le Blanche A, Dégrugilliers L et al (2015) CT density distribution analysis in patients with cystic fibrosis: correlation with pulmonary function and radiologic scores. Acad Radiol 22:179–185. https://doi.org/10.1016/j.acra.2014.09.003

    Article  PubMed  Google Scholar 

  34. Shah RM, Sexauer W, Ostrum BJ et al (1997) High-resolution CT in the acute exacerbation of cystic fibrosis: evaluation of acute findings, reversibility of those findings, and clinical correlation. AJR Am J Roentgenol 169:375–380. https://doi.org/10.2214/ajr.169.2.9242738

    Article  CAS  PubMed  Google Scholar 

  35. Dorlöchter L, Nes H, Fluge G, Rosendahl K (2003) High resolution CT in cystic fibrosis—the contribution of expiratory scans. Eur J Radiol 47:193–198

    Article  Google Scholar 

  36. de Jong PA, Ottink MD, Robben SGF et al (2004) Pulmonary disease assessment in cystic fibrosis: comparison of CT scoring systems and value of bronchial and arterial dimension measurements. Radiology 231:434–439. https://doi.org/10.1148/radiol.2312021393

    Article  PubMed  Google Scholar 

  37. de Jong PA, Lindblad A, Rubin L et al (2006) Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 61:80–85. https://doi.org/10.1136/thx.2005.045146

    Article  PubMed  Google Scholar 

  38. Mueller KS, Long FR, Flucke RL, Castile RG (2010) Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes. Pediatr Radiol 40:1663–1669. https://doi.org/10.1007/s00247-010-1671-1

    Article  PubMed  Google Scholar 

  39. Loeve M, Krestin GP, Rosenfeld M et al (2013) Chest computed tomography: a validated surrogate endpoint of cystic fibrosis lung disease? Eur Respir J 42:844–857. https://doi.org/10.1183/09031936.00051512

    Article  PubMed  Google Scholar 

  40. Committee for Medicinal Products for Human Use (2009) Guideline on the clinical development of medicinal products for the treatment of cystic fibrosis. European Medicines Agency, London

    Google Scholar 

Download references

Funding

This study has received funding by the patient association “Vaincre la Mucoviscidose”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Chassagnon.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Marie-Pierre Revel

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

• Pierre-Régis Burgel, Dominique Hubert and Isabelle Fajac have received personal fees from Vertex Pharmaceuticals, outside the submitted work.

• Guillaume Chassagnon and Marie-Pierre Revel have made a patent application for the image analysis method presented in this article.

The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Joel Coste has significant statistical expertise.

Informed consent

The need for informed consent was waived, in accordance with French rules for retrospective studies

Ethical approval

The study was approved by the Paris Ile de France I ethics committee (ref 13.652).

Study subjects or cohorts overlap

The 17 study subjects of the development cohort have been previously reported in Chassagnon et al. [15].

Methodology

• retrospective

• observational

• multicentre study

Electronic supplementary material

ESM 1

(DOCX 7255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chassagnon, G., Martin, C., Burgel, PR. et al. An automated computed tomography score for the cystic fibrosis lung. Eur Radiol 28, 5111–5120 (2018). https://doi.org/10.1007/s00330-018-5516-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5516-x

Keywords

Navigation