Skip to main content
Log in

Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: A feasibility study

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the diagnostic value of delayed contrast-enhanced computed tomography (DE-CT) for cardiac sarcoidosis (CS) in patients with or without implantable devices, including a quantitative comparison with late gadolinium enhancement cardiac magnetic resonance (LGE-CMR).

Methods

Twenty-four patients (mean age, 64 ± 9 years; 17 women) with known or suspected CS underwent retrospective electrocardiogram-gated DE-CT at 80 kV with knowledge-based iterative model reconstruction. Fourteen patients without implantable devices also underwent LGE-CMR, while ten with pacemakers or implantable cardioverter-defibrillators did not. The presence of hyperenhanced myocardium was assessed visually and quantitatively using a 5-standard deviation threshold above the mean of remote myocardium.

Results

Inter-observer agreement for visual detection of hyperenhanced segments on DE-CT was excellent in patients with implantable devices and in those without (κ = 0.91 and κ = 0.94, respectively). Comparisons of the percent area of hyperenhanced myocardium between DE-CT and LGE-CMR on both per-patient and per-segment analyses showed good correlations (r = 0.96 and r = 0.83, respectively; p < 0.001). The sensitivity and specificity of DE-CT for the diagnosis of CS were 94% and 33%.

Conclusions

The extent of hyperenhanced lesion with DE-CT showed good agreement with LGE-CMR results. DE-CT showed high sensitivity for detecting CS and may be useful particularly in patients with contraindications to CMR.

Key Points

• Delayed contrast-enhanced CT (DE-CT) can be applied to patients with implantable devices.

• DE-CT can detect cardiac sarcoidosis (CS) lesions similarly to cardiac MRI.

• DE-CT shows high sensitivity for detecting CS.

• DE-CT may be useful particularly in patients with contraindications to cardiac MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

CMR:

Cardiac magnetic resonance

CNR:

Contrast-to-noise ratio

CS:

Cardiac sarcoidosis

DE-CT:

Delayed contrast-enhanced computed tomography

JSSOG:

Japanese Society of Sarcoidosis and other Granulomatous Disorder

LGE:

Late gadolinium enhancement

SD:

Standard deviation

SNR:

Signal-to-noise ratio

References

  1. Iannuzzi MC, Rybicki BA, Teirstein AS (2007) Sarcoidosis. N Engl J Med 357:2153–2165

    Article  CAS  PubMed  Google Scholar 

  2. Baughman RP, Teirstein AS, Judson MA et al (2001) Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 164:1885–1889

    Article  CAS  PubMed  Google Scholar 

  3. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet PY, Muller-Quernheim J (2014) Sarcoidosis. Lancet 383:1155–1167

    Article  PubMed  Google Scholar 

  4. Blankstein R, Osborne M, Naya M et al (2014) Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 63:329–336

    Article  PubMed  Google Scholar 

  5. Ohira H, Birnie DH, Pena E et al (2016) Comparison of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 43:259–269

  6. Patel MR, Cawley PJ, Heitner JF et al (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120:1969–1977

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ise T, Hasegawa T, Morita Y et al (2014) Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart 100:1165–1172

    Article  CAS  PubMed  Google Scholar 

  8. Coleman GC, Shaw PW, Balfour PC Jr et al (2016) Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis: a systematic review and meta-analysis. JACC Cardiovasc Imaging. doi:10.1016/j.jcmg.2016.05.009

  9. Hulten E, Agarwal V, Cahill M et al (2016) Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis: a systematic review and meta-analysis. Circ Cardiovasc Imaging 9, e005001

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mahnken AH, Koos R, Katoh M et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047

    Article  PubMed  Google Scholar 

  11. Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833

    Article  PubMed  Google Scholar 

  12. Nieman K, Shapiro MD, Ferencik M et al (2008) Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 247:49–56

    Article  PubMed  Google Scholar 

  13. Zhao L, Ma X, Delano MC et al (2013) Assessment of myocardial fibrosis and coronary arteries in hypertrophic cardiomyopathy using combined arterial and delayed enhanced CT: comparison with MR and coronary angiography. Eur Radiol 23:1034–1043

    Article  PubMed  Google Scholar 

  14. Deux JF, Mihalache CI, Legou F et al (2015) Noninvasive detection of cardiac amyloidosis using delayed enhanced MDCT: a pilot study. Eur Radiol 25:2291–2297

    Article  PubMed  Google Scholar 

  15. Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404

    Article  PubMed  PubMed Central  Google Scholar 

  16. Esposito A, Palmisano A, Antunes S et al (2016) Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-segmented scar and electro-anatomic mapping. JACC Cardiovasc Imaging 9:822–832

  17. Shiozaki AA, Senra T, Arteaga E et al (2013) Myocardial fibrosis detected by cardiac CT predicts ventricular fibrillation/ventricular tachycardia events in patients with hypertrophic cardiomyopathy. J Cardiovasc Comput Tomogr 7:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manabe O, Ohira H, Yoshinaga K et al (2013) Elevated 18F-fluorodeoxyglucose uptake in the interventricular septum is associated with atrioventricular block in patients with suspected cardiac involvement sarcoidosis. Eur J Nucl Med Mol Imaging 40:1558–1566

  19. Oda S, Utsunomiya D, Funama Y et al (2014) A knowledge-based iterative model reconstruction algorithm: can super-low-dose cardiac CT be applicable in clinical settings? Acad Radiol 21:104–110

    Article  PubMed  Google Scholar 

  20. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  CAS  PubMed  Google Scholar 

  21. Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194:881–889

    Article  PubMed  Google Scholar 

  22. Sato T, Tsujino I, Ohira H et al (2013) Paradoxical interventricular septal motion as a major determinant of late gadolinium enhancement in ventricular insertion points in pulmonary hypertension. PLoS One 8, e66724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oyama-Manabe N, Ishimori N, Sugimori H et al (2011) Identification and further differentiation of subendocardial and transmural myocardial infarction by fast strain-encoded (SENC) magnetic resonance imaging at 3.0 Tesla. Eur Radiol 21:2362–2368

    Article  PubMed  Google Scholar 

  24. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91

    Article  PubMed  PubMed Central  Google Scholar 

  25. Murtagh G, Laffin LJ, Beshai JF et al (2016) Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging 9, e003738

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kundel HL, Polansky M (2003) Measurement of observer agreement. Radiology 228:303–308

    Article  PubMed  Google Scholar 

  27. Oda S, Weissman G, Vembar M, Weigold WG (2015) Cardiac CT for planning redo cardiac surgery: effect of knowledge-based iterative model reconstruction on image quality. Eur Radiol 25:58–64

    Article  PubMed  Google Scholar 

  28. Boas FE, Fleischmann D (2011) Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259:894–902

    Article  PubMed  Google Scholar 

  29. Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H (2013) Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 268:237–244

    Article  PubMed  Google Scholar 

  30. Birnie DH, Sauer WH, Bogun F et al (2014) HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 11:1305–1323

    Article  PubMed  Google Scholar 

  31. Kandolin R, Lehtonen J, Airaksinen J et al (2015) Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 131:624–632

    Article  PubMed  Google Scholar 

  32. Takaoka H, Funabashi N, Uehara M, Iida Y, Kobayashi Y (2017) Diagnostic accuracy of CT for the detection of left ventricular myocardial fibrosis in various myocardial diseases. Int J Cardiol 228:375–379

    Article  PubMed  Google Scholar 

  33. Fairbairn TA, Motwani M, Greenwood JP, Plein S (2012) CMR for the diagnosis of right heart disease. JACC Cardiovasc Imaging 5:227–229

  34. Schuleri KH, George RT, Lardo AC (2009) Applications of cardiac multidetector CT beyond coronary angiography. Nat Rev Cardiol 6:699–710

    Article  PubMed  Google Scholar 

  35. Chang HJ, George RT, Schuleri KH et al (2009) Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. JACC Cardiovasc Imaging 2:412–420

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Oyama-Manabe.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Nagara Tamaki, Hokkaido University Graduate School of Medicine.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

Yoichi M. Ito, PhD, kindly provided statistical advice for this manuscript.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Methodology

• retrospective

• experimental

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aikawa, T., Oyama-Manabe, N., Naya, M. et al. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: A feasibility study. Eur Radiol 27, 4054–4063 (2017). https://doi.org/10.1007/s00330-017-4824-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4824-x

Keywords

Navigation