Skip to main content
Log in

3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the feasibility of T1w-3D black-blood turbo spin echo (TSE) sequence with variable flip angles for the diagnosis of thoracic large vessel vasculitis (LVV).

Methods

Thirty-five patients with LVV, diagnosed according to the current standard of reference, and 35 controls were imaged at 3.0T using 1.2 × 1.3 × 2.0 mm3 fat-suppressed, T1w-3D, modified Volumetric Isotropic TSE Acquisition (mVISTA) pre- and post-contrast. Applying a navigator and peripheral pulse unit triggering (PPU), the total scan time was 10–12 min. Thoracic aorta and subclavian and pulmonary arteries were evaluated for image quality (IQ), flow artefact intensity, diagnostic confidence, concentric wall thickening and contrast enhancement (CWT, CCE) using a 4-point scale.

Results

IQ was good in all examinations (3.25 ± 0.72) and good to excellent in 342 of 408 evaluated segments (83.8 %), while 84.1 % showed no or minor flow artefacts. The interobserver reproducibility for the identification of CCE and CWT was 0.969 and 0.971 (p < 0.001) with an average diagnostic confidence of 3.47 ± 0.64. CCE and CWT were strongly correlated (Cohen’s k = 0.87; P < 0.001) and significantly more frequent in the LVV-group (52.8 % vs. 1.0 %; 59.8 % vs. 2.4 %; P < 0.001).

Conclusions

Navigated fat-suppressed T1w-3D black-blood MRI with PPU-triggering allows diagnosis of thoracic LVV.

Key Points

Cross-sectional imaging is frequently applied in the diagnosis of LVV.

Navigated, PPU-triggered, T1w-3D mVISTA pre- and post contrast takes 10–12 min.

In this prospective, single-centre study, T1w-3D mVISTA accurately depicted large thoracic vessels.

T1w-3D mVISTA visualized CWT/CCW as correlates of mural inflammation in LVV.

T1w-3D mVISTA might be an alternative diagnostic tool without ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ACR:

American College of Rheumatology

BB:

Black blood

CDUS:

Colour duplex ultrasound

CCE:

Concentric contrast enhancement

CWT:

Concentric wall thickening

DCL:

Diagnostic confidence level

ETL:

Echo train length

FAI:

Flow artefact intensity

FDG:

[18F]fluorodeoxyglucose

LVV:

Large vessel vasculitis

MRI:

Magnetic resonance imaging

PET/CT:

Positron emission tomography/computed tomography

T1w:

T1-weighted

TAB:

Temporal artery biopsy

TSE:

Turbo spin-echo

mVISTA:

Modified Volumetric ISotropic TSE Acquisition

References

  1. Arend WP, Michel BA, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 33:1129–1134

    Article  CAS  PubMed  Google Scholar 

  2. Hunder GG, Bloch DA, Michel BA et al (1990) The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33:1122–1128

    Article  CAS  PubMed  Google Scholar 

  3. Monach PA (2014) Biomarkers in vasculitis. Curr Opin Rheumatol 26:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fries JF, Hunder GG, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of vasculitis. Summary. Arthritis Rheum 33:1135–1136

    Article  CAS  PubMed  Google Scholar 

  5. Nesher G (2014) The diagnosis and classification of giant cell arteritis. J Autoimmun 48–49:73–75

    Article  PubMed  Google Scholar 

  6. de Souza AW, de Carvalho JF (2014) Diagnostic and classification criteria of Takayasu arteritis. J Autoimmun 48–49:79–83

    Article  PubMed  Google Scholar 

  7. Mukhtyar C, Guillevin L, Cid MC et al (2009) EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann Rheum Dis 68:310–317

    Article  CAS  PubMed  Google Scholar 

  8. Grayson PC, Maksimowicz-McKinnon K, Clark TM et al (2012) Distribution of arterial lesions in Takayasu’s arteritis and giant cell arteritis. Ann Rheum Dis 71:1329–1334

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park MC, Lee SW, Park YB, Chung NS, Lee SK (2005) Clinical characteristics and outcomes of Takayasu’s arteritis: analysis of 108 patients using standardized criteria for diagnosis, activity assessment, and angiographic classification. Scand J Rheumatol 34:284–292

    Article  PubMed  Google Scholar 

  10. Ohigashi H, Haraguchi G, Konishi M et al (2012) Improved prognosis of Takayasu arteritis over the past decade--comprehensive analysis of 106 patients. Circ J 76:1004–1011

    Article  PubMed  Google Scholar 

  11. Evans JM, O'Fallon WM, Hunder GG (1995) Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann Intern Med 122:502–507

    Article  CAS  PubMed  Google Scholar 

  12. Nuenninghoff DM, Hunder GG, Christianson TJ, McClelland RL, Matteson EL (2003) Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum 48:3522–3531

    Article  PubMed  Google Scholar 

  13. Gonzalez-Gay MA, Garcia-Porrua C, Pineiro A, Pego-Reigosa R, Llorca J, Hunder GG (2004) Aortic aneurysm and dissection in patients with biopsy-proven giant cell arteritis from northwestern Spain: a population-based study. Medicine (Baltimore) 83:335–341

    Article  Google Scholar 

  14. Cyran CC, Sourbron S, Bochmann K et al (2011) Quantification of supra-aortic arterial wall inflammation in patients with arteritis using high resolution dynamic contrast-enhanced magnetic resonance imaging: initial results in correlation to [18F]-FDG PET/CT. Investig Radiol 46:594–599

    Article  Google Scholar 

  15. Muto G, Yamashita H, Takahashi Y et al (2014) Large vessel vasculitis in elderly patients: early diagnosis and steroid-response evaluation with FDG-PET/CT and contrast-enhanced CT. Rheumatol Int. doi:10.1007/s00296-014-2985-3

    PubMed  Google Scholar 

  16. Bartels AL, Zeebregts CJ, Bijl M, Tio RA, Slart RH (2009) Fused FDG-PET and MRI imaging of Takayasu arteritis in vertebral arteries. Ann Nucl Med 23:753–756

    Article  PubMed  Google Scholar 

  17. Bley TA, Wieben O, Uhl M et al (2005) Integrated head-thoracic vascular MRI at 3 T: assessment of cranial, cervical and thoracic involvement of giant cell arteritis. MAGMA 18:193–200

    Article  CAS  PubMed  Google Scholar 

  18. Pfefferkorn T, Schuller U, Cyran C et al (2010) Giant cell arteritis of the Basal cerebral arteries: correlation of MRI, dsa, and histopathology. Neurology 74:1651–1653

    Article  CAS  PubMed  Google Scholar 

  19. Saam T, Habs M, Pollatos O et al (2010) High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 83:e182–e184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mani V, Itskovich VV, Szimtenings M et al (2004) Rapid extended coverage simultaneous multisection black-blood vessel wall MR imaging. Radiology 232:281–288

    Article  PubMed  Google Scholar 

  21. Bley TA, Wieben O, Uhl M, Thiel J, Schmidt D, Langer M (2005) High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol 184:283–287

    Article  PubMed  Google Scholar 

  22. Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037

    Article  PubMed  Google Scholar 

  23. Busse RF, Brau AC, Vu A et al (2008) Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 60:640–649

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mugler JP 3rd (2014) Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 39:745–767

    Article  PubMed  Google Scholar 

  25. Fan Z, Zhang Z, Chung YC et al (2010) Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 31:645–654

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sakurai K, Miura T, Sagisaka T et al (2013) Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA) sequence: a preliminary study. J Neuroradiol 40:19–28

    Article  PubMed  Google Scholar 

  27. Qiao Y, Steinman DA, Qin Q et al (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 34:22–30

    Article  PubMed  Google Scholar 

  28. Treitl KM, Treitl M, Kooijman-Kurfuerst H et al (2015) Three-dimensional black-blood t1-weighted turbo spin-echo techniques for the diagnosis of deep vein thrombosis in comparison with contrast-enhanced magnetic resonance imaging: a pilot study. Investig Radiol 50:401–408

    Article  Google Scholar 

  29. Both M, Nolle B, von Forstner C, Moosig F, Gross WL, Heller M (2009) Imaging techniques in the evaluation of primary large vessel vasculitides: part 1: angiography, interventional therapy, and magnetic resonance imaging. Z Rheumatol 68:471–484

    Article  CAS  PubMed  Google Scholar 

  30. Brack A, Martinez-Taboada V, Stanson A, Goronzy JJ, Weyand CM (1999) Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum 42:311–317

    Article  CAS  PubMed  Google Scholar 

  31. Aschwanden M, Daikeler T, Kesten F et al (2013) Temporal artery compression sign--a novel ultrasound finding for the diagnosis of giant cell arteritis. Ultraschall Med 34:47–50

    CAS  PubMed  Google Scholar 

  32. Aschwanden M, Imfeld S, Staub D et al (2015) The ultrasound compression sign to diagnose temporal giant cell arteritis shows an excellent interobserver agreement. Clin Exp Rheumatol 33:S-113–S-115

    Google Scholar 

  33. Kermani TA, Warrington KJ (2013) Polymyalgia rheumatica. Lancet 381:63–72

    Article  PubMed  Google Scholar 

  34. Wasserman BA, Wityk RJ, Trout HH 3rd, Virmani R (2005) Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 36:2504–2513

    Article  PubMed  Google Scholar 

  35. Yamada K, Yoshimura S, Kawasaki M et al (2011) Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging. Atherosclerosis 215:399–404

    Article  CAS  PubMed  Google Scholar 

  36. Norenberg D, Ebersberger HU, Diederichs G, Hamm B, Botnar RM, Makowski MR (2015) Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. Eur Radiol. doi:10.1007/s00330-015-3881-2

    PubMed  Google Scholar 

  37. Swartz RH, Bhuta SS, Farb RI et al (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72:627–634

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt WA, Kraft HE, Vorpahl K, Volker L, Gromnica-Ihle EJ (1997) Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 337:1336–1342

    Article  CAS  PubMed  Google Scholar 

  39. Bley TA, Markl M, Schelp M et al (2008) Mural inflammatory hyperenhancement in MRI of giant cell (temporal) arteritis resolves under corticosteroid treatment. Rheumatology (Oxford) 47:65–67

    Article  CAS  Google Scholar 

  40. Veldhoen S, Klink T, Geiger J et al (2014) MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis. Eur Radiol 24:2971–2979

    Article  PubMed  Google Scholar 

  41. Kuker W (2007) Cerebral vasculitis: imaging signs revisited. Neuroradiology 49:471–479

    Article  PubMed  Google Scholar 

  42. Kuker W, Gaertner S, Nagele T et al (2008) Vessel wall contrast enhancement: a diagnostic sign of cerebral vasculitis. Cerebrovasc Dis 26:23–29

    Article  PubMed  PubMed Central  Google Scholar 

  43. Besson FL, Parienti JJ, Bienvenu B et al (2011) Diagnostic performance of (1)(8)F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 38:1764–1772

    Article  PubMed  Google Scholar 

  44. Treglia G, Mattoli MV, Leccisotti L, Ferraccioli G, Giordano A (2011) Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with large-vessel vasculitis: a systematic review. Clin Rheumatol 30:1265–1275

    Article  PubMed  Google Scholar 

  45. de Leeuw K, Bijl M, Jager PL (2004) Additional value of positron emission tomography in diagnosis and follow-up of patients with large vessel vasculitides. Clin Exp Rheumatol 22:S21–S26

    PubMed  Google Scholar 

  46. Li AE, Kamel I, Rando F et al (2004) Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age. AJR Am J Roentgenol 182:593–597

    Article  PubMed  Google Scholar 

  47. Rosero EB, Peshock RM, Khera A, Clagett P, Lo H, Timaran CH (2011) Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J Vasc Surg 53:950–957

    Article  PubMed  Google Scholar 

  48. Karassa FB, Matsagas MI, Schmidt WA, Ioannidis JP (2005) Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med 142:359–369

    Article  PubMed  Google Scholar 

  49. Salvarani C, Silingardi M, Ghirarduzzi A et al (2002) Is duplex ultrasonography useful for the diagnosis of giant-cell arteritis? Ann Intern Med 137:232–238

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Prof. Dr. Tobias Saam. The authors of this manuscript declare relationships with the following companies: Dr. Hendrik Kooijman-Kurfuerst is a physicist, who works for Philips Healthcare. He modified the original VISTA sequence and so developed the mVISTA sequence.

The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Some study subjects or cohorts have been previously reported at the RSNA Meeting 2014 and at the ISMRM meeting 2015. Pdf-versions of the corresponding power-point presentations are attached as supplemental material. The RSNA-presentation reports about 14 patients and 14 controls of the entire study cohort. The ISMRM-presentation includes the entire study cohort of 70 subjects.

Methodology: prospective, case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Maria Treitl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3449 kb)

ESM 2

(PDF 3832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treitl, K.M., Maurus, S., Sommer, N.N. et al. 3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study. Eur Radiol 27, 2119–2128 (2017). https://doi.org/10.1007/s00330-016-4525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4525-x

Keywords

Navigation