Skip to main content
Log in

Nonenhanced magnetic resonance angiography (MRA) of the calf arteries at 3 Tesla: intraindividual comparison of 3D flow-dependent subtractive MRA and 2D flow-independent non-subtractive MRA

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To prospectively compare 3D flow-dependent subtractive MRA vs. 2D flow-independent non-subtractive MRA for assessment of the calf arteries at 3 Tesla.

Methods

Forty-two patients with peripheral arterial occlusive disease underwent nonenhanced MRA of calf arteries at 3 Tesla with 3D flow-dependent subtractive MRA (fast spin echo sequence; 3D-FSE-MRA) and 2D flow-independent non-subtractive MRA (balanced steady-state-free-precession sequence; 2D-bSSFP-MRA). Moreover, all patients underwent contrast-enhanced MRA (CE-MRA) as standard-of-reference. Two readers performed a per-segment evaluation for image quality (4 = excellent to 0 = non-diagnostic) and severity of stenosis.

Results

Image quality scores of 2D-bSSFP-MRA were significantly higher compared to 3D-FSE-MRA (medians across readers: 4 vs. 3; p < 0.0001) with lower rates of non-diagnostic vessel segments on 2D-bSSFP-MRA (reader 1: <1 % vs. 15 %; reader 2: 1 % vs. 29 %; p < 0.05). Diagnostic performance of 2D-bSSFP-MRA and 3D-FSE-MRA across readers showed sensitivities of 89 % (214/240) vs. 70 % (168/240), p = 0.0153; specificities: 91 % (840/926) vs. 63 % (585/926), p < 0.0001; and diagnostic accuracies of 90 % (1054/1166) vs. 65 % (753/1166), p < 0.0001.

Conclusion

2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust nonenhanced MRA technique for assessment of the calf arteries at 3 Tesla with significantly higher image quality and diagnostic accuracy compared to 3D flow-dependent subtractive MRA (3D-FSE-MRA).

Key Points

2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust NE-MRA technique at 3T

2D-bSSFP-MRA outperforms 3D flow-dependent subtractive MRA (3D-FSE-MRA) as NE-MRA of calf arteries

2D-bSSFP-MRA is a promising alternative to CE-MRA for calf PAOD evaluation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

bSSFP:

Balanced steady state free precession

CE-MRA:

Contrast-enhanced magnetic resonance angiography

CNR:

Contrast-to-noise ratio

DSA:

Digital subtraction angiography

ECG:

Echocardiography

eGFR:

Estimated glomerular filtration rate

FOV:

Field of view

FSE:

Fast spin echo

GRAPPA:

Generalized autocalibrating partially parallel acquisition

MIPs:

Maximum intensity projections

MPRs:

Multiplanar reconstructions

MRA:

Magnetic resonance angiography

NATIVE SPACE:

Non-contrast Angiography of Arteries and Veins Sampling Perfection with Application optimized Contrast by using different flip angle Evolution

NE-MRA:

Nonenhanced magnetic resonance angiography

NSF:

Nephrogenic systemic fibrosis

PACS:

Picture Archiving and Communication System

PAOD:

Peripheral arterial occlusive disease

QI:

Quiescent interval

QISS:

Quiescent interval single shot

RF:

Radiofrequency

SAR:

Specific absorption rate

SNR:

Signal-to-noise ratio

SOR:

Standard of reference

TE:

Echo time

TR:

Repetition time

TOF:

Time of flight

TSE:

Turbo spin echo

References

  1. Hentsch A, Aschauer MA, Balzer JO et al (2003) Gadobutrol-enhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multi-centre blinded comparison with digital subtraction angiography. Eur Radiol 13:2103–2114

    Article  PubMed  Google Scholar 

  2. Daftari Besheli L, Aran S, Shaqdan K, Kay J, Abujudeh H (2014) Current status of nephrogenic systemic fibrosis. Clin Radiol 69:661–668

    Article  CAS  PubMed  Google Scholar 

  3. O'Hare AM, Glidden DV, Fox CS, Hsu CY (2004) High prevalence of peripheral arterial disease in persons with renal insufficiency: results from the National Health and Nutrition Examination Survey 1999-2000. Circulation 109:320–323

    Article  PubMed  Google Scholar 

  4. Wang Y, Alkasab TK, Narin O et al (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260:105–111

    Article  PubMed  Google Scholar 

  5. Thomsen HS (2009) How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin N Am 47:871–875, vii

    Article  PubMed  Google Scholar 

  6. Yang L, Krefting I, Gorovets A et al (2012) Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology 265:248–253

    Article  PubMed  Google Scholar 

  7. Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248:20–43

    Article  PubMed  Google Scholar 

  8. Storey P, Atanasova IP, Lim RP et al (2010) Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn Reson Med 64:1098–1108

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morelli JN, Gerdes CM, Schmitt P et al (2013) Technical considerations in MR angiography: an image-based guide. J Magn Reson Imaging 37:1326–1341

    Article  PubMed  Google Scholar 

  10. Miyazaki M, Akahane M (2012) Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 35:1–19

    Article  PubMed  Google Scholar 

  11. Gutzeit A, Sutter R, Froehlich JM et al (2011) ECG-triggered non-contrast-enhanced MR angiography (TRANCE) versus digital subtraction angiography (DSA) in patients with peripheral arterial occlusive disease of the lower extremities. Eur Radiol 21:1979–1987

    Article  PubMed  Google Scholar 

  12. Lim RP, Hecht EM, Xu J et al (2008) 3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J Magn Reson Imaging 28:181–189

    Article  PubMed  Google Scholar 

  13. Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I (2010) Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med 63:951–958

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haneder S, Attenberger U, Riffel P, Henzler T, Schoenberg S, Michaely H (2011) Magnetic resonance angiography (MRA) of the calf station at 3.0 T: intraindividual comparison of non-enhanced ECG-gated flow-dependent MRA, continuous table movement MRA and time-resolved MRA. Eur Radiol 21:1452–1461

    Article  PubMed  Google Scholar 

  15. Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C (1992) Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med 326:1577–1581

    Article  CAS  PubMed  Google Scholar 

  16. Offerman EJ, Hodnett PA, Edelman RR, Koktzoglou I (2011) Nonenhanced methods for lower-extremity MRA: a phantom study examining the effects of stenosis and pathologic flow waveforms at 1.5T. J Magn Reson Imaging 33:401–408

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H (2000) Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 12:776–783

    Article  CAS  PubMed  Google Scholar 

  18. Lim RP, Fan Z, Chatterji M et al (2013) Comparison of nonenhanced MR angiographic subtraction techniques for infragenual arteries at 1.5 T: a preliminary study. Radiology 267:293–304

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fuchs F, Laub G, Othomo K (2003) TrueFISP--technical considerations and cardiovascular applications. Eur J Radiol 46:28–32

    Article  PubMed  Google Scholar 

  20. Bley TA, François CJ, Schiebler ML et al (2015) Non-contrast-enhanced MRA of renal artery stenosis: validation against DSA in a porcine model. Eur Radiol :1–9

  21. Ward EV, Galizia MS, Usman A, Popescu AR, Dunkle E, Edelman RR (2013) Comparison of quiescent inflow single-shot and native space for nonenhanced peripheral MR angiography. J Magn Reson Imaging 38:1531–1538

    Article  PubMed  Google Scholar 

  22. Knobloch G, Gielen M, Lauff MT et al (2014) ECG-gated quiescent-interval single-shot MR angiography of the lower extremities: initial experience at 3 T. Clin Radiol 69:485–491

    Article  CAS  PubMed  Google Scholar 

  23. Wagner M, Knobloch G, Gielen M et al (2015) Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography. Int J Cardiovasc Imaging 31:841–850

    Article  PubMed  Google Scholar 

  24. Amin P, Collins JD, Koktzoglou I et al (2014) Evaluating peripheral arterial disease with unenhanced quiescent-interval single-shot MR angiography at 3 T. AJR Am J Roentgenol 202:886–893

    Article  PubMed  Google Scholar 

  25. Thierfelder KM, Meimarakis G, Nikolaou K et al (2014) Non-contrast-enhanced MR angiography at 3 Tesla in patients with advanced peripheral arterial occlusive disease. PLoS One 9, e91078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hodnett PA, Koktzoglou I, Davarpanah AH et al (2011) Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology 260:282–293

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hodnett PA, Ward EV, Davarpanah AH et al (2011) Peripheral arterial disease in a symptomatic diabetic population: prospective comparison of rapid unenhanced MR angiography (MRA) with contrast-enhanced MRA. AJR Am J Roentgenol 197:1466–1473

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klasen J, Blondin D, Schmitt P et al (2012) Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: comparison with contrast-enhanced MRA. Clin Radiol 67:441–446

    Article  CAS  PubMed  Google Scholar 

  29. Hansmann J, Morelli JN, Michaely HJ et al (2014) Nonenhanced ECG-gated quiescent-interval single shot MRA: image quality and stenosis assessment at 3 tesla compared with contrast-enhanced MRA and digital subtraction angiography. J Magn Reson Imaging 39:1486–1493

    Article  PubMed  Google Scholar 

  30. Schubert T, Takes M, Aschwanden M et al (2015) Non-enhanced, ECG-gated MR angiography of the pedal vasculature: comparison with contrast-enhanced MR angiography and digital subtraction angiography in peripheral arterial occlusive disease. Eur Radiol :1–9

  31. Zhang N, Fan Z, Luo N et al (2015) Noncontrast MR angiography (MRA) of infragenual arteries using flow-sensitive dephasing (FSD)-prepared steady-state free precession (SSFP) at 3.0 Tesla: comparison with contrast-enhanced MRA. J Magn Reson Imaging: n/a–n/a

  32. Zhang N, Zou L, Huang Y et al (2015) Non-Contrast Enhanced MR Angiography (NCE-MRA) of the Calf: a direct comparison between Flow-Sensitive Dephasing (FSD) prepared Steady-State Free Precession (SSFP) and Quiescent-Interval Single-Shot (QISS) in patients with diabetes. PLoS One 10, e0128786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohrs OK, Petersen SE, Heidt MC et al (2011) High-resolution 3D non-contrast-enhanced, ECG-gated, multi-step MR angiography of the lower extremities: comparison with contrast-enhanced MR angiography. Eur Radiol 21:434–442

    Article  PubMed  Google Scholar 

  34. Partovi S, Rasmus M, Schulte A-C et al (2013) ECG-triggered non-enhanced MR angiography of peripheral arteries in comparison to DSA in patients with peripheral artery occlusive disease. Magn Reson Mater Phys Biol Med 26:271–280

    Article  CAS  Google Scholar 

  35. Liu X, Zhang N, Fan Z et al (2014) Detection of infragenual arterial disease using non–contrast-enhanced MR angiography in patients with diabetes. J Magn Reson Imaging 40:1422–1429

    Article  PubMed  Google Scholar 

  36. Li D, Lin J, Yan F et al (2011) Unenhanced calf MR angiography at 3.0 T using electrocardiography-gated partial-fourier fast spin echo imaging with variable flip angle. Eur Radiol 21:1311–1322

    Article  PubMed  Google Scholar 

  37. Zhang L, Liu X, Fan Z et al (2015) Noncontrast MRA of pedal arteries in Type II diabetes. Acad Radiol 22:513–519

    Article  PubMed  Google Scholar 

  38. Rasper M, Wildgruber M, Settles M et al (2015) 3D non-contrast-enhanced ECG-gated MR angiography of the lower extremities with dual-source radiofrequency transmission at 3.0 T: intraindividual comparison with contrast-enhanced MR angiography in PAOD patients. Eur Radiol :1–10

Download references

Acknowledgments

The scientific guarantor of this publication is Gesine Knobloch. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. Dr. Carsten Schwenke kindly provided statistical advice for this manuscript. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: prospective, randomized controlled trial, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesine Knobloch.

Additional information

This work is part of the dissertation of Marie-Teres Lauff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knobloch, G., Lauff, MT., Hirsch, S. et al. Nonenhanced magnetic resonance angiography (MRA) of the calf arteries at 3 Tesla: intraindividual comparison of 3D flow-dependent subtractive MRA and 2D flow-independent non-subtractive MRA. Eur Radiol 26, 4585–4594 (2016). https://doi.org/10.1007/s00330-016-4246-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4246-1

Keywords

Navigation