Skip to main content
Log in

T2 black lesions on routine knee MRI: differential considerations

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The majority of abnormal findings or lesions on T2-weighted fast spin-echo (FSE) magnetic resonance imaging (MRI) are hyperintense due to increased perfusion or fluid content, such as infections, tumours or synovitis. Hypointense lesions on T2-weighted images (both fat-suppressed and non-fat-suppressed) are less common and can sometimes be overlooked. Such lesions have limited differential diagnostic possibilities, and include vacuum phenomenon, loose body, tenosynovial giant cell tumour, rheumatoid arthritis, haemochromatosis, gout, amyloid, chondrocalcinosis, hydroxyapetite deposition disease, lipoma arborescens, arthrofibrosis and iatrogenic lesions. These lesions often show characteristic appearances and predilections in the knee. In this article, the authors describe the MRI features of hypointense T2 lesions on routine knee MRI and outline a systematic diagnostic approach towards their evaluation.

Key Points

• Hypointense lesions on T2 images (T2 Dark Lesions) encompass limited diagnostic possibilities.

• T2 Dark lesions often show characteristic appearances and predilections in the knee.

• A systematic diagnostic approach will help radiologists make the correct diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

CC:

Chondrocalcinosis

CPPD:

Calcium pyrophosphate dehydrate

fsPDW:

Fat-suppressed proton density

GRE:

Gradient recalled echo

LA:

Lipoma arborescens

LBs:

Loose bodies

MM:

Meniscomeniscal

MRI:

Magnetic resonance imaging

PVNS:

Pigmented villonodular synovitis

RA:

Rheumatoid arthritis

STIR:

Short tau inversion recovery

TGCT:

Tenosynovial giant cell tumour

VP:

Vacuum phenomenon

References

  1. Narvaez JA, Narvaez J, Ortega R, De Lama E, Roca Y, Vidal N (2003) Hypointense synovial lesions on T2-weighted images: differential diagnosis with pathologic correlation. AJR Am J Roentgenol 181(3):761–9

    Article  PubMed  Google Scholar 

  2. Gohil I, Vilensky JA, Weber EC (2014) Vacuum phenomenon: Clinical relevance. Clin Anat 27(3):455–62

    Article  PubMed  Google Scholar 

  3. Mugera C, Suh KJ, Huisman TA, Weber K, Belzberg AJ, Carrino JA, Chhabra A (2013) Sclerotic lesions of the spine: MRI assessment. J Magn Reson Imaging 38(6):1310–24

    Article  PubMed  Google Scholar 

  4. Shogry ME, Pope TL Jr (1991) Vacuum phenomenon simulating meniscal or cartilaginous injury of the knee at MR imaging. Radiology 180(2):513–5

    Article  CAS  PubMed  Google Scholar 

  5. Sakamoto FA, Winalski CS, Schils JP, Parker RD, Polster JM (2011) Vacuum phenomenon: prevalence and appearance in the knee with 3 T magnetic resonance imaging. Skeletal Radiol 40(10):1275–85

    Article  PubMed  Google Scholar 

  6. Milgram JW (1977) The classification of loose bodies in human joints. Clin Orthop Relat Res 124:282–91

    PubMed  Google Scholar 

  7. Felson DT (2004) An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am 42(1):1–9, v

    Article  PubMed  Google Scholar 

  8. Chhabra A, Soldatos T (2012) Soft-tissue lesions: when can we exclude sarcoma? AJR Am J Roentgenol 199(6):1345–57

    Article  PubMed  Google Scholar 

  9. Milgram JW (1977) Synovial osteochondromatosis: a histopathological study of thirty cases. J Bone Joint Surg Am 59(6):792–801

    CAS  PubMed  Google Scholar 

  10. Crotty JM, Monu JU, Pope TL Jr (1996) Synovial osteochondromatosis. Radiol Clin North Am 34(2):327–42, xi

    CAS  PubMed  Google Scholar 

  11. Murphey MD, Vidal JA, Fanburg-Smith JC, Gajewski DA (2007) Imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics 27(5):1465–88

    Article  PubMed  Google Scholar 

  12. Yoshimitsu K, Kakihara D, Irie H, Tajima T, Nishie A, Asayama Y et al (2006) Papillary renal carcinoma: diagnostic approach by chemical shift gradient-echo and echo-planar MR imaging. J Magn Reson Imaging 23(3):339–44

    Article  PubMed  Google Scholar 

  13. Nguyen JC, De Smet AA, Graf BK, Rosas HG (2014) MR imaging-based diagnosis and classification of meniscal tears. Radiographics 34(4):981–99

    Article  PubMed  Google Scholar 

  14. Camacho MA (2004) The double posterior cruciate ligament sign. Radiology 233(2):503–4

    Article  PubMed  Google Scholar 

  15. Stoller DW, Tirman PFJ, Bredella MA (2004) Diagnostic Imaging: Orthopaedics: Amirsys

  16. Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. (2014) The human meniscus: A review of anatomy, function, injury, and advances in treatment. Clin Anat

  17. Sanders TG, Linares RC, Lawhorn KW, Tirman PF, Houser C (1999) Oblique meniscomeniscal ligament: another potential pitfall for a meniscal tear--anatomic description and appearance at MR imaging in three cases. Radiology 213(1):213–6

    Article  CAS  PubMed  Google Scholar 

  18. Chan CM, Goldblatt JP (2012) Unilateral meniscomeniscal ligament. Orthopedics 35(12):e1815–7

    Article  PubMed  Google Scholar 

  19. Choi SH, Shin KE, Chang MJ, Woo SY, Lee SH (2013) Diagnostic criterion to distinguish between incomplete and complete discoid lateral meniscus on MRI. J Magn Reson Imaging 38(2):417–21

    Article  PubMed  Google Scholar 

  20. Singh K, Helms CA, Jacobs MT, Higgins LD (2006) MRI appearance of Wrisberg variant of discoid lateral meniscus. AJR Am J Roentgenol 187(2):384–7

    Article  PubMed  Google Scholar 

  21. Griffin AM, Ferguson PC, Catton CN, Chung PW, White LM, Wunder JS et al (2012) Long-term outcome of the treatment of high-risk tenosynovial giant cell tumor/pigmented villonodular synovitis with radiotherapy and surgery. Cancer 118(19):4901–9

    Article  PubMed  Google Scholar 

  22. Huang GS, Lee CH, Chan WP, Chen CY, Yu JS, Resnick D (2003) Localized nodular synovitis of the knee: MR imaging appearance and clinical correlates in 21 patients. AJR Am J Roentgenol 181(2):539–43

    Article  PubMed  Google Scholar 

  23. Ravi V, Wang WL, Lewis VO (2011) Treatment of tenosynovial giant cell tumor and pigmented villonodular synovitis. Curr Opin Oncol 23(4):361–6

    Article  CAS  PubMed  Google Scholar 

  24. Murphey MD, Rhee JH, Lewis RB, Fanburg-Smith JC, Flemming DJ, Walker EA (2008) Pigmented villonodular synovitis: radiologic-pathologic correlation. Radiographics 28(5):1493–518

    Article  PubMed  Google Scholar 

  25. Yu JS, Chung C, Recht M, Dailiana T, Jurdi R (1997) MR imaging of tophaceous gout. AJR Am J Roentgenol 168(2):523–7

    Article  CAS  PubMed  Google Scholar 

  26. Richette P, Bardin T (2010) Gout Lancet 375(9711):318–28

    Article  CAS  PubMed  Google Scholar 

  27. Ko KH, Hsu YC, Lee HS, Lee CH, Huang GS (2010) Tophaceous gout of the knee: revisiting MRI patterns in 30 patients. J Clin Rheumatol 16(5):209–14

    Article  PubMed  Google Scholar 

  28. Chen CK, Yeh LR, Pan HB, Yang CF, Lu YC, Wang JS et al (1999) Intra-articular gouty tophi of the knee: CT and MR imaging in 12 patients. Skeletal Radiol 28(2):75–80

    Article  CAS  PubMed  Google Scholar 

  29. Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199(5 Suppl):S78–86

    Article  PubMed  Google Scholar 

  30. Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, Franz WB, 3rd, et al. (2014) Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis

  31. Gabriel SE (2001) The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 27(2):269–81

    Article  CAS  PubMed  Google Scholar 

  32. Poleksic L, Musikic P, Zdravkovic D, Watt I, Bacic G (1996) MRI evaluation of the knee in rheumatoid arthritis. Br J Rheumatol 35(Suppl 3):36–9

    Article  PubMed  Google Scholar 

  33. Rominger MB, Bernreuter WK, Kenney PJ, Morgan SL, Blackburn WD, Alarcon GS (1993) MR imaging of the hands in early rheumatoid arthritis: preliminary results. Radiographics 13(1):37–46

    Article  CAS  PubMed  Google Scholar 

  34. Kursunoglu-Brahme S, Riccio T, Weisman MH, Resnick D, Zvaifler N, Sanders ME et al (1990) Rheumatoid knee: role of gadopentetate-enhanced MR imaging. Radiology 176(3):831–5

    Article  CAS  PubMed  Google Scholar 

  35. Economides CP, Soteriades ES, Hadjigavriel M, Seimenis I, Karantanas A (2013) Iron deposits in the knee joints of a thalassemic patient. Acta Radiologica Short Reports 2(1):2047981613477401

    Article  Google Scholar 

  36. Axford JS, Bomford A, Revell P, Watt I, Williams R, Hamilton EB (1991) Hip arthropathy in genetic hemochromatosis. Radiographic and histologic features. Arthritis Rheum 34(3):357–61

    Article  CAS  PubMed  Google Scholar 

  37. Adamson TC 3rd, Resnik CS, Guerra J Jr, Vint VC, Weisman MH, Resnick D (1983) Hand and wrist arthropathies of hemochromatosis and calcium pyrophosphate deposition disease: distinct radiographic features. Radiology 147(2):377–81

    Article  PubMed  Google Scholar 

  38. Jager HJ, Mehring U, Gotz GF, Neise M, Erlemann R, Kapp HJ et al (1997) Radiological features of the visceral and skeletal involvement of hemochromatosis. Eur Radiol 7(8):1199–206

    Article  CAS  PubMed  Google Scholar 

  39. Sahinbegovic E, Dallos T, Aigner E, Axmann R, Manger B, Englbrecht M et al (2010) Musculoskeletal disease burden of hereditary hemochromatosis. Arthritis Rheum 62(12):3792–8

    Article  PubMed  Google Scholar 

  40. Rihl M, Kellner H (2004) Arthropathy of hereditary hemochromatosis. Z Rheumatol 63(1):22–9

    Article  CAS  PubMed  Google Scholar 

  41. Frenzen K, Schafer C, Keysser G (2013) Erosive and inflammatory joint changes in hereditary hemochromatosis arthropathy detected by low-field magnetic resonance imaging. Rheumatol Int 33(8):2061–7

    Article  PubMed  Google Scholar 

  42. Queiroz-Andrade M, Blasbalg R, Ortega CD, Rodstein MA, Baroni RH, Rocha MS et al (2009) MR imaging findings of iron overload. Radiographics 29(6):1575–89

    Article  PubMed  Google Scholar 

  43. Eustace S, Buff B, McCarthy C, MacMathuana P, Gilligan P, Ennis JT (1994) Magnetic resonance imaging of hemochromatosis arthropathy. Skeletal Radiol 23(7):547–9

    Article  CAS  PubMed  Google Scholar 

  44. M'Bappe P, Grateau G (2012) Osteo-articular manifestations of amyloidosis. Best Pract Res Clin Rheumatol 26(4):459–75

    Article  PubMed  Google Scholar 

  45. Jensen PS (1988) Chondrocalcinosis and other calcifications. Radiol Clin North Am 26(6):1315–25

    CAS  PubMed  Google Scholar 

  46. Brower AC, Flemming DJ (2012) Arthritis in Black and White: Elsevier Health Sciences

  47. Barskova VG, Kudaeva FM, Bozhieva LA, Smirnov AV, Volkov AV, Nasonov EL (2013) Comparison of three imaging techniques in diagnosis of chondrocalcinosis of the knees in calcium pyrophosphate deposition disease. Rheumatology (Oxford) 52(6):1090–4

    Article  Google Scholar 

  48. Beltran J, Marty-Delfaut E, Bencardino J, Rosenberg ZS, Steiner G, Aparisi F et al (1998) Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations. Skeletal Radiol 27(7):369–74

    Article  CAS  PubMed  Google Scholar 

  49. Burke BJ, Escobedo EM, Wilson AJ, Hunter JC (1998) Chondrocalcinosis mimicking a meniscal tear on MR imaging. AJR Am J Roentgenol 170(1):69–70

    Article  CAS  PubMed  Google Scholar 

  50. Kaushik S, Erickson JK, Palmer WE, Winalski CS, Kilpatrick SJ, Weissman BN (2001) Effect of chondrocalcinosis on the MR imaging of knee menisci. AJR Am J Roentgenol 177(4):905–9

    Article  CAS  PubMed  Google Scholar 

  51. Senocak E, Gurel K, Gurel S, Ozturan KE, Cakici H, Yilmaz F et al (2007) Lipoma arborescens of the suprapatellar bursa and extensor digitorum longus tendon sheath: report of 2 cases. J Ultrasound Med 26(10):1427–33

    PubMed  Google Scholar 

  52. Kloen P, Keel SB, Chandler HP, Geiger RH, Zarins B, Rosenberg AE (1998) Lipoma arborescens of the knee. J Bone Joint Surg (Br) 80(2):298–301

    Article  CAS  Google Scholar 

  53. Al-Shraim MM (2011) Intra-articular lipoma arborescens of the knee joint. Ann Saudi Med 31(2):194–6

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sheldon PJ, Forrester DM, Learch TJ (2005) Imaging of intraarticular masses. Radiographics 25(1):105–19

    Article  PubMed  Google Scholar 

  55. Coll JP, Ragsdale BD, Chow B, Daughters TC (2011) Best cases from the AFIP: lipoma arborescens of the knees in a patient with rheumatoid arthritis. Radiographics 31(2):333–7

    Article  PubMed  Google Scholar 

  56. Apple JS, Martinez S, Hardaker WT, Daffner RH, Gehweiler JA (1982) Synovial plicae of the knee. Skeletal Radiol 7(4):251–4

    Article  CAS  PubMed  Google Scholar 

  57. Dupont JY (1997) Synovial plicae of the knee. Controversies and review. Clin Sports Med 16(1):87–122

    Article  CAS  PubMed  Google Scholar 

  58. Boles CA, Martin DF (2001) Synovial plicae in the knee. AJR Am J Roentgenol 177(1):221–7

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Valtuille R, Abascal F, Cerezal L, Garcia-Valtuille A, Pereda T, Canga A et al (2002) Anatomy and MR imaging appearances of synovial plicae of the knee. Radiographics 22(4):775–84

    Article  PubMed  Google Scholar 

  60. Horton LK, Jacobson JA, Lin J, Hayes CW (2000) MR imaging of anterior cruciate ligament reconstruction graft. AJR Am J Roentgenol 175(4):1091–7

    Article  CAS  PubMed  Google Scholar 

  61. Papakonstantinou O, Chung CB, Chanchairujira K, Resnick DL (2003) Complications of anterior cruciate ligament reconstruction: MR imaging. Eur Radiol 13(5):1106–17

    PubMed  Google Scholar 

  62. Bradley DM, Bergman AG, Dillingham MF (2000) MR imaging of cyclops lesions. AJR Am J Roentgenol 174(3):719–26

    Article  CAS  PubMed  Google Scholar 

  63. McCauley TR (2005) MR imaging evaluation of the postoperative knee. Radiology 234(1):53–61

    Article  PubMed  Google Scholar 

  64. Recht MP, Kramer J (2002) MR imaging of the postoperative knee: a pictorial essay. Radiographics 22(4):765–74

    Article  PubMed  Google Scholar 

  65. Harris WH (1994) Osteolysis and particle disease in hip replacement. A review. Acta Orthop Scand 65(1):113–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Pam Curry for creating the beautiful illustrations. The scientific guarantor of this publication is Avneesh Chhabra. The authors of this manuscript declare a relationships with the following company: Dr. Avneesh Chhabra serves as research consultant with Siemens CAD group. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required because it is a review article. Written informed consent was not required for this study because it is a review article. No study subjects or cohorts have been previously reported. Methodology: performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneesh Chhabra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhwa, V., Cho, G., Moore, D. et al. T2 black lesions on routine knee MRI: differential considerations. Eur Radiol 26, 2387–2399 (2016). https://doi.org/10.1007/s00330-015-4027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4027-2

Keywords

Navigation