Skip to main content
Log in

Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate imaging changes occurring in a rat model of elastase-induced abdominal aortic aneurysm (AAA), with emphasis on the intraluminal thrombus (ILT) occurrence.

Methods

The post-induction growth of the AAA diameter was characterized using ultrasound in 22 rats. ILT was reported on 13 rats that underwent 14 magnetic resonance imaging (MRI) 2-18 days post-surgery, and on 10 rats that underwent 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET)/microcomputed tomography examinations 2-27 days post-surgery. Logistic regressions were used to establish the evolution with time of AAA length, diameter, ILT thickness, volume, stratification, MRI and FDG PET signalling properties, and histological assessment of inflammatory infiltrates.

Results

All of the following significantly increased with time post-induction (p < 0.001): AAA length, AAA diameter, ILT maximal thickness, ILT volume, ILT iron content and related MRI signalling changes, quantitative uptake on FDG PET, and the magnitude of inflammatory infiltrates on histology. However, the aneurysm growth peak followed occurrence of ILT approximately 6 days after elastase infusion.

Conclusion

Our model emphasizes that occurrence of ILT precedes AAA peak growth. Aneurysm growth is associated with increasing levels of iron, signalling properties changes in both MRI and FDG PET, relating to its biological activities.

Key Points

ILT occurrence in AAA is associated with increasing FDG uptake and growth.

MRI signalling changes in ILT reflect activities such as haemorrhage and RBC trapping.

Monitoring ILT activities using MRI may require no exogenous contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dobrin PB (1989) Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg Clin N Am 69:687–703

    CAS  PubMed  Google Scholar 

  2. Michel JB, Martin-Ventura JL, Egido J et al (2011) Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res 90:18–27

    Article  CAS  PubMed  Google Scholar 

  3. Sakalihasan N, Limet R, Defawe OD (2005) Abdominal aortic aneurysm. Lancet 365:1577–1589

    Article  CAS  PubMed  Google Scholar 

  4. Touat Z, Lepage L, Ollivier V et al (2008) Dilation-dependent activation of platelets and prothrombin in human thoracic ascending aortic aneurysm. Arterioscler Thromb Vasc Biol 28:940–946

    Article  CAS  PubMed  Google Scholar 

  5. Sarda-Mantel L, Coutard M, Rouzet F et al (2006) 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26:2153–2159

    Article  CAS  PubMed  Google Scholar 

  6. Fontaine V, Touat Z, el Mtairag M et al (2004) Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am J Pathol 164:2077–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Houard X, Rouzet F, Touat Z et al (2007) Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J Pathol 212:20–28

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Pinna R, Madrigal-Matute J, Tarin C et al (2013) Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 33:2013–2020

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Pinna R, Lindholt JS, Madrigal-Matute J et al (2014) From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm. Thromb Haemost 112:87–95

    Article  CAS  PubMed  Google Scholar 

  10. Defawe OD, Colige A, Lambert CA et al (2003) TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc Res 60:205–213

    Article  CAS  PubMed  Google Scholar 

  11. Fontaine V, Jacob MP, Houard X et al (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Folkesson M, Kazi M, Zhu C et al (2007) Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb Haemost 98:427–433

    CAS  PubMed  Google Scholar 

  13. Marbacher S, Marjamaa J, Bradacova K et al (2014) Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke 45:248–254

    Article  PubMed  Google Scholar 

  14. Mitchell DG, Burk DL Jr, Vinitski S, Rifkin MD (1987) The biophysical basis of tissue contrast in extracranial MR imaging. AJR Am J Roentgenol 149:831–837

    Article  CAS  PubMed  Google Scholar 

  15. Winner MW 3rd, Sharkey-Toppen T, Zhang X et al (2014) Iron and noncontrast magnetic resonance T2* as a marker of intraplaque iron in human atherosclerosis. J Vasc Surg. doi:10.1016/j.jvs.2014.02.006

    PubMed  PubMed Central  Google Scholar 

  16. Lindholt JS, Bjorck M, Michel JB (2013) Anti-platelet treatment of middle-sized abdominal aortic aneurysms. Curr Vasc Pharmacol 11:305–313

    Article  CAS  PubMed  Google Scholar 

  17. Touat Z, Ollivier V, Dai J et al (2006) Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am J Pathol 168:1022–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB (1990) Elastase-induced experimental aneurysms in rats. Circulation 82:973–981

    Article  CAS  PubMed  Google Scholar 

  19. Feldkamp LDL, Kress J (1984) Practical cone-beam algorithm. JOSA A 1:612–619

    Article  Google Scholar 

  20. Bahri MA, Plenevaux A, Warnock G, Luxen A, Seret A (2009) NEMA NU4-2008 image quality performance report for the microPET focus 120 and for various transmission and reconstruction methods. J Nucl Med 50:1730–1738

    Article  PubMed  Google Scholar 

  21. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16:145–158

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen-Legros J, Bizot J, Bolesse M, Pulicani JP (1980) "Diaminobenzidine black" as a new histochemical demonstration of exogenous iron (author's transl). Histochemistry 66:239–244

    Article  CAS  PubMed  Google Scholar 

  23. Coutard M, Touat Z, Houard X, Leclercq A, Michel JB (2010) Thrombus versus wall biological activities in experimental aortic aneurysms. J Vasc Res 47:355–366

    Article  PubMed  Google Scholar 

  24. Defawe OD, Hustinx R, Defraigne JO, Limet R, Sakalihasan N (2005) Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin Nucl Med 30:340–341

    Article  PubMed  Google Scholar 

  25. Reeps C, Bundschuh RA, Pellisek J et al (2013) Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int J Cardiovasc Imaging 29:505–512

    Article  PubMed  Google Scholar 

  26. Nchimi A, Cheramy-Bien JP, Gasser TC et al (2014) Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ Cardiovasc Imaging 7:82–91

    Article  PubMed  Google Scholar 

  27. English SJ, Piert MR, Diaz JA et al (2015) Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann Surg 261:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  28. Michineau S, Dai J, Gervais M et al (2010) Aortic length changes during abdominal aortic aneurysm formation, expansion and stabilisation in a rat model. Eur J Vasc Endovasc Surg 40:468–474

    Article  CAS  PubMed  Google Scholar 

  29. Rai D, Wisniowski B, Bradshaw B et al (2014) Abdominal aortic aneurysm calcification and thrombus volume are not associated with outcome following endovascular abdominal aortic aneurysm repair. Eur Radiol 24:1768–1776

    Article  PubMed  Google Scholar 

  30. Nchimi A, Defawe O, Brisbois D et al (2010) MR Imaging of Iron Phagocytosis in Intraluminal Thrombi of Abdominal Aortic Aneurysms in Humans. Radiology 254:973–981

    Article  PubMed  Google Scholar 

  31. Richards JM, Semple SI, MacGillivray TJ et al (2011) Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imaging 4:274–281

    Article  PubMed  Google Scholar 

  32. Klink A, Heynens J, Herranz B et al (2011) In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol 58:2522–2530

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rouzet F, Bachelet-Violette L, Alsac JM et al (2011) Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J Nucl Med 52:1433–1440

    Article  CAS  PubMed  Google Scholar 

  34. Nahrendorf M, Keliher E, Marinelli B et al (2011) Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol 31:750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Valk B, Marx JJ (1999) Iron, atherosclerosis, and ischemic heart disease. Arch Intern Med 159:1542–1548

    Article  PubMed  Google Scholar 

  36. Nguyen VL, Leiner T, Hellenthal FA et al (2014) Abdominal Aortic Aneurysms with High Thrombus Signal Intensity on Magnetic Resonance Imaging are Associated with High Growth Rate. Eur J Vasc Endovasc Surg. doi:10.1016/j.ejvs.2014.04.025

    Google Scholar 

  37. Morin-Roy F, Kauffmann C, Tang A et al (2014) Impact of contrast injection and stent-graft implantation on reproducibility of volume measurements in semiautomated segmentation of abdominal aortic aneurysm on computed tomography. Eur Radiol 24:1594–1601

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Cécile Wegria and Carmela La Mantia for manuscript handling, editing and management; Jacques Trentesaux, Jean-Marc Léonard, and Jean-François Monville, M.D. for their kind assistance and advice in MRI. The scientific guarantor of this publication is Natzi Sakalihasan MD, PhD. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by the 7th European Framework Program collaborative project: Fighting Aneurysmal Disease (FAD). Adelin Albert, PhD and Laurence Seidel PhD kindly provided statistical advice for this manuscript. Institutional Review Board approval was obtained. Approval from the institutional animal care committee was obtained. Methodology: prospective, experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Nchimi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (GIF 140 kb)

High resolution image (TIFF 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nchimi, A., Courtois, A., El Hachemi, M. et al. Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model. Eur Radiol 26, 2378–2386 (2016). https://doi.org/10.1007/s00330-015-4010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4010-y

Keywords

Navigation