Skip to main content

Advertisement

Log in

Diffusion-Weighted Imaging-guided MR Spectroscopy in Breast Lesions using Readout-Segmented Echo-Planar Imaging

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the feasibility and effectiveness of diffusion-weighted imaging (DWI)-guided magnetic resonance spectroscopy (MRS) using readout-segmented echo-planar imaging (RS-EPI) to characterise breast lesions.

Materials and methods

A total of 258 patients with 258 suspicious breast lesions larger than 1 cm in diameter were examined using DWI-guided, single-voxel MRS with RS-EPI. The mean total choline-containing compound (tCho) signal-to-noise ratio (SNR) and concentration were used for the interpretation of MRS data. T-tests, χ2-tests, receiver operating characteristic (ROC) curve analyses and Pearson correlations were conducted for statistical analysis.

Results

Histologically, 183 lesions were malignant, and 75 lesions were benign. Both the mean tCho SNR and concentration of malignant lesions were higher than those of benign lesions (6.23 ± 3.30 AU/mL vs. 1.26 ± 1.75 AU/mL and 3.17 ± 2.03 mmol/kg vs. 0.86 ± 0.83 mmol/kg, respectively; P < 0.0001). For a tCho SNR of 2.0 AU/mL and a concentration of 1.76 mmol/kg, the corresponding areas under the ROC curves were 0.93 and 0.90, respectively. The mean tCho SNR and concentration negatively correlated with apparent diffusion coefficients calculated from RS-EPI, with correlation coefficients of −0.54 and −0.48, respectively.

Conclusion

DWI-guided MRS using RS-EPI is feasible and accurate for characterising breast lesions.

Key Points

The mean tCho SNR and concentration negatively correlated with ADCs.

DWI-guided MRS using RS-EPI is feasible.

DWI-guided MRS using RS-EPI accurately characterises breast lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the receiver operating characteristic curve

BI-RADS:

Breast Imaging Reporting and Data System

CI:

Confidence interval

DCE:

Dynamic contrast enhancement

DWI:

Diffusion-weighted imaging

MRS:

Magnetic resonance spectroscopy

ROC:

Receiver operating characteristic

ROI:

Region of interest

RS-EPI:

Readout-segmented echo-planar imaging

SNR:

Signal-to-noise ratio

SS-EPI:

Single-shot echo-planar imaging

tCho:

Total choline-containing compounds

References

  1. Gruber S, Debski BK, Pinker K et al (2011) Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology 261:752–761

    Article  PubMed  Google Scholar 

  2. Dorrius MD, Pijnappel RM, van der Weide Jansen MC et al (2012) The added value of quantitative multi-voxel MR spectroscopy in breast magnetic resonance imaging. Eur Radiol 22:915–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239:686–692

    Article  PubMed  Google Scholar 

  4. Stanwell P, Gluch L, Clark D et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15:1037–1043

    Article  PubMed  Google Scholar 

  5. Ei Khouli RH, Jacobs MA, Mezban SD et al (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE (2014) Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol 24:2835–2847

    Article  PubMed  Google Scholar 

  7. Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655

    Article  CAS  PubMed  Google Scholar 

  8. Murtz P, Tsesarskiy M, Kowal A et al (2014) Diffusion-weighted magnetic resonance imaging of breast lesions: the influence of different fat-suppression techniques on quantitative measurements and their reproducibility. Eur Radiol 24:2540–2551

    Article  CAS  PubMed  Google Scholar 

  9. Baltzer PA, Dietzel M (2013) Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T--systematic review and meta-analysis. Radiology 267:735–746

    Article  PubMed  Google Scholar 

  10. Mizukoshi W, Kozawa E, Inoue K et al (2013) (1)H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches. Eur Radiol 23:75–83

    Article  PubMed  Google Scholar 

  11. Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA (2004) Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging 19:68–75

    Article  PubMed  Google Scholar 

  12. Bartella L, Thakur SB, Morris EA et al (2007) Enhancing nonmass lesions in the breast: evaluation with proton (1H) MR spectroscopy. Radiology 245:80–87

    Article  PubMed  Google Scholar 

  13. Kousi E, Tsougos I, Vasiou K et al (2012) Magnetic resonance spectroscopy of the breast at 3T: pre- and post-contrast evaluation for breast lesion characterization. ScientificWorldJournal 2012:754380

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lenkinski RE, Wang X, Elian M, Goldberg SN (2009) Interaction of gadolinium-based MR contrast agents with choline: implications for MR spectroscopy (MRS) of the breast. Magn Reson Med 61:1286–1292

    Article  CAS  PubMed  Google Scholar 

  15. Sijens PE, Oudkerk M, van Dijk P, Levendag PC, Vecht CJ (1998) 1H MR spectroscopy monitoring of changes in choline peak area and line shape after Gd-contrast administration. Magn Reson Imaging 16:1273–1280

    Article  CAS  PubMed  Google Scholar 

  16. Sijens PE, van den Bent MJ, Nowak PJ, van Dijk P, Oudkerk M (1997) 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med 37:222–225

    Article  CAS  PubMed  Google Scholar 

  17. Baltzer PA, Gussew A, Dietzel M et al (2012) Effect of contrast agent on the results of in vivo (1)H MRS of breast tumors - is it clinically significant? NMR Biomed 25:67–74

    Article  CAS  PubMed  Google Scholar 

  18. Bogner W, Pinker-Domenig K, Bickel H et al (2012) Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0 T. Radiology 263:64–76

    Article  PubMed  Google Scholar 

  19. Kim YJ, Kim SH, Kang BJ et al (2014) Readout-segmented echo-planar imaging in diffusion-weighted mr imaging in breast cancer: comparison with single-shot echo-planar imaging in image quality. Korean J Radiol 15:403–410

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bogner W, Pinker K, Zaric O et al (2014) Bilateral Diffusion-weighted MR Imaging of Breast Tumors with Submillimeter Resolution Using Readout-segmented Echo-planar Imaging at 7 T. Radiology. doi:10.1148/radiol.14132340:132340

    PubMed  Google Scholar 

  21. Mori N, Ota H, Mugikura S et al (2014) Luminal-Type Breast Cancer: Correlation of Apparent Diffusion Coefficients with the Ki-67 Labeling Index. Radiology. doi:10.1148/radiol.14140283:140283

    PubMed  Google Scholar 

  22. Choi SY, Chang YW, Park HJ, Kim HJ, Hong SS, Seo DY (2012) Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer. Br J Radiol 85:e474–e479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A (2011) Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol 196:210–217

    Article  PubMed  Google Scholar 

  24. Kelley DA, Wald LL, Star-Lack JM (1999) Lactate detection at 3T: compensating J coupling effects with BASING. J Magn Reson Imaging 9:732–737

    Article  CAS  PubMed  Google Scholar 

  25. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272

    Article  CAS  PubMed  Google Scholar 

  26. Baik HM, Su MY, Yu H, Mehta R, Nalcioglu O (2006) Quantification of choline-containing compounds in malignant breast tumors by 1H MR spectroscopy using water as an internal reference at 1.5 T. Magma 19:96–104

    Article  CAS  PubMed  Google Scholar 

  27. Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251

    Article  CAS  Google Scholar 

  28. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  29. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  30. Heo SH, Jeong YY, Shin SS et al (2010) Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol 11:295–303

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bakken IJ, Gribbestad IS, Singstad TE, Kvistad KA (2001) External standard method for the in vivo quantification of choline-containing compounds in breast tumors by proton MR spectroscopy at 1.5 Tesla. Magn Reson Med 46:189–192

    Article  CAS  PubMed  Google Scholar 

  32. Jansen JF, Backes WH, Nicolay K, Kooi ME (2006) 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240:318–332

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is FuhuaYan. The authors of this manuscript declare relationships with Siemens Shenzhen Magnetic Resonance Ltd. No complex statistical methods were necessary for this study. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. The study subjects and cohorts have not been previously reported. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhua Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Chai, W., Fu, C. et al. Diffusion-Weighted Imaging-guided MR Spectroscopy in Breast Lesions using Readout-Segmented Echo-Planar Imaging. Eur Radiol 26, 1565–1574 (2016). https://doi.org/10.1007/s00330-015-4000-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4000-0

Keywords

Navigation