Skip to main content
Log in

Proton density fat-fraction is an accurate biomarker of hepatic steatosis in adolescent girls and young women

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare complex quantitative magnetic resonance imaging (MRI) with MR spectroscopy (MRS) for quantification of hepatic steatosis (HS) and determine clinically significant MRI-based thresholds of HS in female youths.

Methods

This prospective, cross-sectional study was conducted in 132 healthy females (11–22 years, mean 13.3 ± 2). Proton density fat-fraction (PDFF) was measured using complex quantitative MRI and MRS. Body mass index (BMI), fasting labs [glucose, insulin, alanine aminotransferase (ALT), and other metabolic markers] were obtained. Outcomes were measured using regression analysis, Spearman-rank correlation, and receiver operator characteristics (ROC) analysis. HS was defined as MRI-PDFF >5.6 %.

Results

HS was detected by MRI-PDFF in 15 % of all subjects. Linear regression demonstrated excellent correlation and agreement [r2 = 0.96, slope = 0.97 (95 %CI: 0.94–1.00), intercept = 0.78 % (95 %CI: 0.58–0.98 %)] between MRI-PDFF and MRS-PDFF. MRI-PDFF had a sensitivity of 100 % (95 %CI: 0.79–1.00), specificity of 96.6 % (95 %CI: 0.91–0.99), and a kappa index of 87 % (95 %CI: 0.75–0.99) for identifying HS. In overweight subjects with HS, MRI-PDFF correlated with ALT (r = 0.84, p < 0.0001) and insulin (r = 0.833, p < 0.001), but not with BMI or WC. ROC analysis ascertained an optimal MRI-PDFF threshold of 3.5 % for predicting metabolic syndrome (sensitivity = 76 %, specificity = 83 %).

Conclusion

Complex quantitative MRI demonstrates strong correlation and agreement with MRS to quantify hepatic triglyceride content in adolescent girls and young women. A low PDFF threshold is predictive of metabolic syndrome in this population.

Key points

Confounder-corrected quantitative MRI (ccqMRI) effectively measures hepatic triglyceride content in adolescent girls.

MRS and ccqMRI strongly correlate in liver proton density fat-fraction (PDFF) detection.

A PDFF threshold of 3.5 % may be predictive of paediatric metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AUC:

Area under the curve

BMI:

Body mass index

CT:

Computed tomography

HDL:

High-density lipoprotein

HOMA-IR:

Homeostasis model of assessment-insulin resistance

HS:

Hepatic steatosis

ICC:

Intra-class correlation

LDL:

Low density lipoprotein

IR:

Insulin resistance

Met-IFG:

Metabolic syndrome-impaired fasting glucose criteria

Met-IR:

Metabolic syndrome-insulin resistance criteria

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Steatohepatitis

PDFF:

Proton density fat-fraction

ROC:

Receiver operator characteristics

TE:

Echo time

TR:

Echo repetition

US:

Ultrasound

WC:

Waist circumference

WI:

Wisconsin

References

  1. Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angulo P (2009) The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 58:1538–1544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Clark JM (2006) The Epidemiology of Nonalcoholic Fatty Liver Disease in Adults. J Clin Gastroenterol Nonalcoholic Steatohepatitis 40 Supplement:S5-S10

  3. Loomba R, Sirlin CB, Schwimmer JB, Lavine JE (2009) Advances in pediatric nonalcoholic fatty liver disease. Hepatology 50:1282–1293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Denzer C, Thiere D, Muche R et al (2009) Gender-specific prevalences of fatty liver in obese children and adolescents: roles of body fat distribution, sex steroids, and insulin resistance. J Clin Endocrinol Metab 94:3872–3881

    Article  CAS  PubMed  Google Scholar 

  5. Ko JS, Yoon JM, Yang HR et al (2009) Clinical and histological features of nonalcoholic fatty liver disease in children. Dig Dis Sci 54:2225–2230

    Article  PubMed  Google Scholar 

  6. Targher G, Day CP, Bonora E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 363:1341–1350

    Article  CAS  PubMed  Google Scholar 

  7. Schwimmer JB, Deutsch R, Rauch JB, Behling C, Newbury R, Lavine JE (2003) Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J Pediatr 143:500–505

    Article  PubMed  Google Scholar 

  8. Utzschneider KM, Kahn SE (2006) Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91:4753–4761

    Article  CAS  PubMed  Google Scholar 

  9. Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:S99–S112

    Article  CAS  PubMed  Google Scholar 

  10. Ong JP, Younossi ZM (2007) Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis 11:1–16, vii

    Article  PubMed  Google Scholar 

  11. Schwimmer JB, Behling C, Newbury R et al (2005) Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 42:641–649

    Article  PubMed  Google Scholar 

  12. Manco M, Alisi A, Nobili V (2008) Risk of severe liver disease in NAFLD with normal ALT levels: a pediatric report. Hepatology 48:2087–2088, author reply 2088

    Article  PubMed  Google Scholar 

  13. Fraser A, Longnecker MP, Lawlor DA (2007) Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999-2004. Gastroenterology 133:1814–1820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mofrad P, Contos MJ, Haque M et al (2003) Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 37:1286–1292

    Article  PubMed  Google Scholar 

  15. Schwimmer JB (2007) Definitive diagnosis and assessment of risk for nonalcoholic fatty liver disease in children and adolescents. Semin Liver Dis 27:312–318

    Article  PubMed  Google Scholar 

  16. Fabbrini E, Conte C, Magkos F (2009) Methods for assessing intrahepatic fat content and steatosis. Curr Opin Clin Nutr Metab Care 12:474–481

    Article  PubMed  Google Scholar 

  17. Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O (1994) Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 12:487–495

    Article  CAS  PubMed  Google Scholar 

  18. Wong WF, Northrup SR, Herrick RC, Glombicki AP, Wood RP, Morrisett JD (1994) Quantitation of lipid in biological tissue by chemical shift magnetic resonance imaging. Magn Reson Med 32:440–446

    Article  CAS  PubMed  Google Scholar 

  19. Yokoo T, Bydder M, Hamilton G et al (2009) Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 251:67–76

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258:749–759

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hines CD, Frydrychowicz A, Hamilton G et al (2011) T(1) independent, T(2) (*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. J Magn Reson Imaging 33:873–881

    Article  PubMed Central  PubMed  Google Scholar 

  22. Meisamy S, Hines CD, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258:767–775

    Article  PubMed Central  PubMed  Google Scholar 

  23. Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized mr-based biomarker of tissue fat concentration. J Magn Reson Imaging. doi:10.1002/jmri.23741

    Google Scholar 

  24. Tang A, Tan J, Sun M et al (2013) Nonalcoholic Fatty Liver. MR Imaging of Liver Proton Density Fat Fraction to Assess Hepatic Steatosis. Radiology, Disease. doi:10.1148/radiol.12120896

    Google Scholar 

  25. Rehm JL, Connor EL, Wolfgram PM, Eickhoff JC, Reeder SB, Allen DB (2014) Predicting Hepatic Steatosis in a Racially and Ethnically Diverse Cohort of Adolescent Girls. J Pediatr. doi:10.1016/j.jpeds.2014.04.019

    PubMed Central  PubMed  Google Scholar 

  26. Taylor SJ, Whincup PH, Hindmarsh PC, Lampe F, Odoki K, Cook DG (2001) Performance of a new pubertal self-assessment questionnaire: a preliminary study. Paediatr Perinat Epidemiol 15:88–94

    Article  CAS  PubMed  Google Scholar 

  27. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115:e500–e503

    Article  PubMed  Google Scholar 

  28. (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555-576

  29. Fernandez JR, Redden DT, Pietrobelli A, Allison DB (2004) Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr 145:439–444

    Article  PubMed  Google Scholar 

  30. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH (2003) Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch Pediatr Adolesc Med 157:821–827

    Article  PubMed  Google Scholar 

  31. Calcaterra V, Klersy C, Muratori T et al (2008) Prevalence of metabolic syndrome (MS) in children and adolescents with varying degrees of obesity. Clin Endocrinol 68:868–872

    Article  CAS  Google Scholar 

  32. Brau AC, Beatty PJ, Skare S, Bammer R (2008) Comparison of reconstruction accuracy and efficiency among autocalibrating data-driven parallel imaging methods. Magn Reson Med 59:382–395

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bydder M, Yokoo T, Hamilton G et al (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 26:347–359

    Article  PubMed Central  PubMed  Google Scholar 

  35. Yu H, Shimakawa A, Hines CD et al (2011) Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 66:199–206

    Article  PubMed Central  PubMed  Google Scholar 

  36. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 58:354–364

    Article  PubMed  Google Scholar 

  37. Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton G, Middleton MS, Bydder M et al (2009) Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J Magn Reson Imaging 30:145–152

    Article  PubMed Central  PubMed  Google Scholar 

  39. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  40. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  41. Linder K, Springer F, Machann J et al (2014) Relationships of body composition and liver fat content with insulin resistance in obesity-matched adolescents and adults. Obesity (Silver Spring) 22:1325–1331

    Article  CAS  Google Scholar 

  42. Schwimmer JB, Pardee PE, Lavine JE, Blumkin AK, Cook S (2008) Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation 118:277–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Alderete TL, Toledo-Corral CM, Desai P, Weigensberg MJ, Goran MI (2013) Liver fat has a stronger association with risk factors for type 2 diabetes in african-american compared with Hispanic adolescents. J Clin Endocrinol Metab 98:3748–3754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pacifico L, Nobili V, Anania C, Verdecchia P, Chiesa C (2011) Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk. World J Gastroenterol 17:3082–3091

    Article  PubMed Central  PubMed  Google Scholar 

  45. Schwimmer JB, Dunn W, Norman GJ et al (2010) SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology 138:1357–1364, 1364.e1351-1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Scott Reeder, MD, PhD. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors wish to acknowledge the support of the National Institutes of Health (K24DK102595, R01DK083380, R01DK088925, R01DK100651, K12HD055894, T32DK07758604, UL1TR00427), the Genentech Center for Clinical Research, and the Endocrine Fellows Foundation, as well GE Healthcare, who provides research support to the University of Wisconsin. Jen Eickhoff, PhD kindly provided statistical advice for this manuscript. Dr. Eickhoff has significant statistical expertise and is one of the authors of this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Some study subjects or cohorts have been previously reported in the Journal of Paediatrics. It should be noted that data acquired from the complete group of subjects was previously reported in a manuscript that proposed a risk assessment model for early detection of HS using common anthropometric and metabolic markers. The only overlapping data are patient characteristics. Methodology: case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Rehm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehm, J.L., Wolfgram, P.M., Hernando, D. et al. Proton density fat-fraction is an accurate biomarker of hepatic steatosis in adolescent girls and young women. Eur Radiol 25, 2921–2930 (2015). https://doi.org/10.1007/s00330-015-3724-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3724-1

Keywords

Navigation