Skip to main content
Log in

Longitudinal change in quantitative meniscus measurements in knee osteoarthritis—data from the Osteoarthritis Initiative

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position.

Methods

Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change.

Results

Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31).

Conclusion

This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis.

Key Points

First longitudinal MRI-based measurements of change of meniscus position and size.

Quantitative longitudinal evaluation of meniscus change in knee osteoarthritis.

Improved sensitivity to change of 3D measurements compared with single slice analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

WORMS:

Whole Organ Magnetic Resonance Imaging Score

BLOKS:

Boston Leeds Osteoarthritis Knee Score

MOAKS:

MRI Osteoarthritis Knee Score

OA:

Osteoarthritis

JSW:

Radiographic joint space width

JSN:

Joint space narrowing

OAI:

Osteoarthritis Initiative

OARSI:

Osteoarthritis Research Society International

DESSwe:

Double echo steady state sequence with water excitation

IWTSE:

Intermediate-weighted turbo spin echo

c:

Central slice

c5:

Central five slices

SRM:

Mean change / Standard deviation change

References

  1. Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res (109):184–192

  2. Krause WR, Pope MH, Johnson RJ, Wilder DG (1976) Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am 58:599–604

    CAS  PubMed  Google Scholar 

  3. Kurosawa H, Fukubayashi T, Nakajima H (1980) Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res (149):283–290

  4. Chivers MD, Howitt SD (2009) Anatomy and physical examination of the knee menisci: a narrative review of the orthopedic literature. J Can Chiropr Assoc 53:319–333

    PubMed Central  PubMed  Google Scholar 

  5. Englund M (2004) Meniscal tear--a feature of osteoarthritis. Acta Orthop Scand Suppl 75:1–45, backcover

    PubMed  Google Scholar 

  6. Rennie WJ, Finlay DB (2006) Meniscal extrusion in young athletes: associated knee joint abnormalities. AJR Am J Roentgenol 186:791–794

    Article  PubMed  Google Scholar 

  7. Choi CJ, Choi YJ, Lee JJ, Choi CH (2010) Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy 26:1602–1606

    Article  PubMed  Google Scholar 

  8. Lee DH, Lee BS, Kim JM, Yang KS, Cha EJ, Park JH et al (2011) Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 19:222–229

    Article  PubMed  Google Scholar 

  9. Crema MD, Roemer FW, Felson DT, Englund M, Wang K, Jarraya M et al (2012) Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the multicenter osteoarthritis study. Radiology 264:494–503

    Article  PubMed Central  PubMed  Google Scholar 

  10. Freutel M, Seitz AM, Ignatius A, Durselen L (2015) Influence of partial meniscectomy on attachment forces, superficial strain and contact mechanics in porcine knee joints. Knee Surg Sports Traumatol Arthrosc 23(1):74–82

  11. Padalecki JR, Jansson KS, Smith SD, Dornan GJ, Pierce CM, Wijdicks CA et al (2014) Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site: in situ pull-out repair restores derangement of joint mechanics. Am J Sports Med 42:699–707

    Article  PubMed  Google Scholar 

  12. Arno S, Bell CP, Uquillas C, Borukhov I, Walker PS (2015) Tibiofemoral contact mechanics following a horizontal cleavage lesion in the posterior horn of the medial meniscus. J Orthop Res. doi:10.1002/jor.22809

  13. Englund M, Guermazi A, Gale D, Hunter DJ, Aliabadi P, Clancy M et al (2008) Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med 359:1108–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Guermazi A, Niu J, Hayashi D, Roemer FW, Englund M, Neogi T et al (2012) Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345:e5339

    Article  PubMed Central  PubMed  Google Scholar 

  15. Englund M, Guermazi A, Lohmander SL (2009) The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am 47:703–712

    Article  PubMed  Google Scholar 

  16. Guermazi A, Roemer FW, Haugen IK, Crema MD, Hayashi D (2013) MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9:236–251

    Article  PubMed  Google Scholar 

  17. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190

    Article  CAS  PubMed  Google Scholar 

  18. Lynch JA, Roemer FW, Nevitt MC, Felson DT, Niu J, Eaton CB et al (2010) Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthr Cartil 18:1393–1401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr Cartil 19:990–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Roemer FW, Nevitt MC, Felson DT, Niu J, Lynch JA, Crema MD et al (2012) Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral joint–the MOST study. Osteoarthr Cartil 20:1391–1398

    Article  CAS  PubMed  Google Scholar 

  21. Sharma L, Eckstein F, Song J, Guermazi A, Prasad P, Kapoor D et al (2008) Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 58:1716–1726

    Article  PubMed  Google Scholar 

  22. Wirth W, Frobell RB, Souza RB, Li X, Wyman BT, Le Graverand MP et al (2010) A three-dimensional quantitative method to measure meniscus shape, position, and signal intensity using MR images: a pilot study and preliminary results in knee osteoarthritis. Magn Reson Med 63:1162–1171

    Article  PubMed  Google Scholar 

  23. Bloecker K, Englund M, Wirth W, Hudelmaier M, Burgkart R, Frobell RB et al (2011) Size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area- a cross-sectional study. BMC Musculoskelet Disord 12:248

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wenger A, Englund M, Wirth W, Hudelmaier M, Kwoh K, Eckstein F (2012) Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: a pilot study. Eur Radiol 22:211–220

    Article  PubMed  Google Scholar 

  25. Siorpaes K, Wenger A, Bloecker K, Wirth W, Hudelmaier M, Eckstein F (2012) Interobserver reproducibility of quantitative meniscus analysis using coronal multiplanar DESS and IWTSE MR imaging. Magn Reson Med 67:1419–1426

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bloecker K, Wirth W, Hudelmaier M, Burgkart R, Frobell R, Eckstein F (2012) Morphometric differences between the medial and lateral meniscus in healthy men - a three-dimensional analysis using magnetic resonance imaging. Cells Tissues Organs 195:353–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bloecker K, Guermazi A, Wirth W, Kwoh CK, Resch H, Hunter DJ et al (2014) Correlation of semiquantitative vs quantitative MRI meniscus measures in osteoarthritic knees: results from the Osteoarthritis Initiative. Skelet Radiol 43:227–232

    Article  CAS  Google Scholar 

  28. Hunter DJ, Buck R, Vignon E, Eckstein F, Brandt K, Mazzuca SA et al (2009) Relation of regional articular cartilage morphometry and meniscal position by MRI to joint space width in knee radiographs. Osteoarthr Cartil 17:1170–1176

    Article  CAS  PubMed  Google Scholar 

  29. Bloecker K, Wirth W, Hunter DJ, Duryea J, Guermazi A, Kwoh CK et al (2013) Contribution of regional 3D meniscus and cartilage morphometry by MRI to joint space width in fixed flexion knee radiography–a between-knee comparison in subjects with unilateral joint space narrowing. Eur J Radiol 82:e832–e839

    Article  CAS  PubMed  Google Scholar 

  30. Wenger A, Wirth W, Hudelmaier M, Noebauer-Huhmann I, Trattnig S, Bloecker K et al (2013) Meniscus body position, size, and shape in persons with and persons without radiographic knee osteoarthritis: quantitative analyses of knee magnetic resonance images from the osteoarthritis initiative. Arthritis Rheum 65:1804–1811

    Article  PubMed  Google Scholar 

  31. Bloecker K, Guermazi A, Wirth W, Benichou O, Kwoh CK, Hunter DJ et al (2013) Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing - data from the Osteoarthritis Initiative. Osteoarthr Cartil 21:419–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Eckstein F, Benichou O, Wirth W, Nelson DR, Maschek S, Hudelmaier M et al (2009) Magnetic resonance imaging-based cartilage loss in painful contralateral knees with and without radiographic joint space narrowing: data from the Osteoarthritis Initiative. Arthritis Rheum 61:1218–1225

    Article  PubMed Central  PubMed  Google Scholar 

  33. Benichou OD, Hunter DJ, Nelson DR, Guermazi A, Eckstein F, Kwoh K et al (2010) One-year change in radiographic joint space width in patients with unilateral joint space narrowing: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 62:924–931

    Article  CAS  Google Scholar 

  34. Eckstein F, Wirth W, Nevitt MC (2012) Recent advances in osteoarthritis imaging-the Osteoarthritis Initiative. Nat Rev Rheumatol 8:622–630

    Article  CAS  PubMed  Google Scholar 

  35. Eckstein F, Kwoh CK, Link TM (2014) Imaging research results from the osteoarthritis initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis 73:1289–1300

    Article  PubMed  Google Scholar 

  36. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15:1–56

    Article  Google Scholar 

  38. Schneider E, NessAiver M (2013) The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update. Osteoarthr Cartil 21:110–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Eckstein F, Hudelmaier M, Wirth W, Kiefer B, Jackson R, Yu J et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wirth W, Nevitt M, Hellio Le Graverand MP, Benichou O, Dreher D, Davies RY et al (2010) Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols--comparative data from the Osteoarthritis Initiative (OAI). Osteoarthr Cartil 18:547–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Eckstein F, Kunz M, Hudelmaier M, Jackson R, Yu J, Eaton CB et al (2007) Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative. Magn Reson Med 57:448–454

    Article  PubMed  Google Scholar 

  42. Hunter DJ, Zhang W, Conaghan PG, Hirko K, Menashe L, Reichmann WM et al (2011) Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthr Cartil 19:589–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Eckstein F, Guermazi A, Gold G, Duryea J, Hellio Le Graverand MP, Wirth W et al (2014) Imaging of cartilage and bone: promises and pitfalls in clinical trials of osteoarthritis. Osteoarthr Cartil 22:1516–1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hunter DJ, Zhang YQ, Tu X, LaValley M, Niu JB, Amin S et al (2006) Change in joint space width: hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum 54:2488–2495

    Article  CAS  PubMed  Google Scholar 

  45. Hunter DJ, Zhang YQ, Niu JB, Tu X, Amin S, Clancy M et al (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54:795–801

    Article  CAS  PubMed  Google Scholar 

  46. Bruns K, Svensson F, Turkiewicz A, Wirth W, Guermazi A, Eckstein F et al (2014) Meniscus body position and its change over four years in asymptomatic adults: a cohort study using data from the Osteoarthritis Initiative (OAI). BMC Musculoskelet Disord 15:32

    Article  PubMed Central  PubMed  Google Scholar 

  47. Eckstein F, Kwoh CK, Boudreau R, Wang Z, Hannon M, Cotofana S et al (2013) Quantitative magnetic resonance imaging measures of cartilage predict knee replacement - a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis 72:707–714

    Article  PubMed  Google Scholar 

  48. Bloecker K, Guermazi A, Wirth W, Benichou O, Kwoh CK, Hunter DJ, Englund M, Resch H, Eckstein F (2012) Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing - data from the Osteoarthritis Initiative. Osteoarthr Cartil

Download references

Acknowledgments

We would like to thank the OAI participants, OAI investigators and OAI Clinical Center’s staff for generating this publicly available image data set. The study and image acquisition was supported by the Osteoarthritis Initiative (OAI). The OAI is a public–private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Pfizer, Inc.; Novartis Pharmaceuticals Corporation; Merck Research Laboratories; and GlaxoSmithKline. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. The image analysis was supported by the Paracelsus Medical University (PMU) Forschungsfond (PMU FFF R-12702/036/BLO).

The scientific guarantor of this publication is Katja Bloecker. The authors of this manuscript declare relationships with the following companies: Ali Guermazi is President and co-owner of the Boston Core Imaging Lab (BICL), a company providing MRI reading services to academic researchers and to industry. He provides consulting services to Novartis, Genzyme, Stryker, MerckSerono and AstraZeneca. Wolfgang Wirth has a part-time appointment with Chondrometrics GmbH, a company providing MR image analysis services, and is co-owner of Chondrometrics GmbH. Felix Eckstein is CEO and co-owner of Chondrometrics GmbH. He provides consulting services to Mariel and MerckSerono. Katja Bloecker, Wolfgang Hitzl and David Hunter declare no relationships with any companies, whose products or services may be related to the subject matter of the article. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: retrospective, cross sectional, OAI as multicenter study / specific data acquisition performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Bloecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloecker, K., Wirth, W., Guermazi, A. et al. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis—data from the Osteoarthritis Initiative. Eur Radiol 25, 2960–2968 (2015). https://doi.org/10.1007/s00330-015-3710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3710-7

Keywords

Navigation