Skip to main content

Advertisement

Log in

Diffusion-weighted magnetic resonance imaging using different b-value combinations for the evaluation of treatment results after volumetric MR-guided high-intensity focused ultrasound ablation of uterine fibroids

  • Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the value of diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coefficient (ADC) mapping using different b-value combinations for treatment evaluation after magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) of uterine fibroids.

Methods

Fifty-six patients with 67 uterine fibroids were treated with volumetric MR-HIFU. Pre-treatment and post-treatment images were obtained using contrast-enhanced T1-weighted MRI (CE-T1WI) and DWI using b = 0, 200, 400, 600, 800 s/mm2. ADC maps were generated using subsets of b-values to investigate the effects of tissue ablation on water diffusion and perfusion in fibroids treated with MR-HIFU. Four combinations of b-values were used: (1) all b-values; (2) b = 0, 200 s/mm2; (3) b = 400, 600, 800 s/mm2; and (4) b = 0, 800 s/mm2.

Results

Using the lowest b-values (0 and 200 s/mm2), the mean ADC value in the ablated tissue reduced significantly (p < 0.001) compared with baseline. Calculating the ADC value with the highest b-values (400, 600, 800 s/mm2), the ADC increased significantly (p < 0.001) post-treatment. ADC maps calculated with the lowest b-values resulted in the best visual agreement of non-perfused fibroid tissue detected on CE images. Other b-value combinations and normal myometrium showed no difference in ADC after MR-HIFU treatment.

Conclusions

A decrease in contrast agent uptake within the ablated region on CE-T1WI was correlated to a significantly decreased ADC when b = 0 and 200 s/mm2 were used.

Key Points

DWI could be useful for treatment evaluation after MR-HIFU of uterine fibroids

The ADC in fibroid tissue is influenced by the choice of b- values

Low b-values seem the best choice to emphasise perfusion effects after MR-HIFU

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Merrill RM (2008) Hysterectomy surveillance in the United States, 1997 through 2005. Med Sci Monit 14:CR24–CR31

    PubMed  Google Scholar 

  2. Cramer SF, Patel A (1990) The frequency of uterine leiomyomas. Am J Clin Pathol 94:435–438

    CAS  PubMed  Google Scholar 

  3. Stewart EA (2001) Uterine fibroids. Lancet 357:293–298

    Article  CAS  PubMed  Google Scholar 

  4. Gupta S, Jose J, Manyonda I (2008) Clinical presentation of fibroids. Best Pract Res Clin Obstet Gynaecol 22:615–626

    Article  PubMed  Google Scholar 

  5. Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K (2012) Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Womens Health 12:6

    Article  PubMed Central  PubMed  Google Scholar 

  6. Parker WH (2007) Uterine myomas: management. Fertil Steril 88:255–271

    Article  PubMed  Google Scholar 

  7. Behera MA, Leong M, Johnson L, Brown H (2010) Eligibility and accessibility of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of uterine leiomyomas. Fertil Steril 94:1864–1868

    Article  PubMed  Google Scholar 

  8. Zowall H, Cairns JA, Brewer C, Lamping DL, Gedroyc WM, Regan L (2008) Cost-effectiveness of magnetic resonance-guided focused ultrasound surgery for treatment of uterine fibroids. BJOG 115:653–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226:897–905

    Article  PubMed  Google Scholar 

  10. Voogt MJ, Trillaud H, Kim YS et al (2012) Volumetric feedback ablation of uterine fibroids using magnetic resonance-guided high intensity focused ultrasound therapy. Eur Radiol 22:411–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jolesz FA (2009) MRI-guided focused ultrasound surgery. Annu Rev Med 60:417–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hindley J, Gedroyc WM, Regan L et al (2004) MRI guidance of focused ultrasound therapy of uterine fibroids: early results. AJR Am J Roentgenol 183:1713–1719

    Article  PubMed  Google Scholar 

  13. Stewart EA, Gedroyc WM, Tempany CM et al (2003) Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 189:48–54

    Article  PubMed  Google Scholar 

  14. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 142:619–624

    Article  CAS  PubMed  Google Scholar 

  15. Hijnen NM, Elevelt A, Grull H (2013) Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy. Investig Radiol 48:517–524

    Article  CAS  Google Scholar 

  16. Merckel LG, Bartels LW, Kohler MO et al (2013) MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform. Cardiovasc Intervent Radiol 36:292–301

    Article  PubMed  Google Scholar 

  17. Laurent S, Elst LV, Copoix F, Muller RN (2001) Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment. Investig Radiol 36:115–122

    Article  CAS  Google Scholar 

  18. Jacobs MA, Herskovits EH, Kim HS (2005) Uterine fibroids: diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery—preliminary study. Radiology 236:196–203

    Article  PubMed  Google Scholar 

  19. Jacobs MA, Gultekin DH, Kim HS (2010) Comparison between diffusion-weighted imaging, T2-weighted, and postcontrast T1-weighted imaging after MR-guided, high intensity, focused ultrasound treatment of uterine leiomyomata: preliminary results. Med Phys 37:4768–4776

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liapi E, Kamel IR, Bluemke DA, Jacobs MA, Kim HS (2005) Assessment of response of uterine fibroids and myometrium to embolization using diffusion-weighted echoplanar MR imaging. J Comput Assist Tomogr 29:83–86

    Article  PubMed  Google Scholar 

  21. Pilatou MC, Stewart EA, Maier SE et al (2009) MRI-based thermal dosimetry and diffusion-weighted imaging of MRI-guided focused ultrasound thermal ablation of uterine fibroids. J Magn Reson Imaging 29:404–411

    PubMed Central  PubMed  Google Scholar 

  22. Faye N, Pellerin O, Thiam R et al (2013) Diffusion-weighted imaging for evaluation of uterine arterial embolization of fibroids. Magn Reson Med 70:1739–1747

    Article  PubMed  Google Scholar 

  23. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184

    Article  PubMed  Google Scholar 

  24. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  25. Stejskal EO (1965) Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys 43:3597–3603

    Google Scholar 

  26. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223

    Article  PubMed  Google Scholar 

  27. Farrer-Brown G, Beilby JO, Tarbit MH (1970) The vascular patterns in myomatous uteri. J Obstet Gynaecol Br Commonw 77:967–975

    Article  CAS  PubMed  Google Scholar 

  28. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR (2010) An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 64:1580–1585

    Article  PubMed  Google Scholar 

  29. Walocha JA, Litwin JA, Miodonski AJ (2003) Vascular system of intramural leiomyomata revealed by corrosion casting and scanning electron microscopy. Hum Reprod 18:1088–1093

    Article  PubMed  Google Scholar 

  30. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  31. Thoeny HC, De Keyzer F, Boesch C, Hermans R (2004) Diffusion-weighted imaging of the parotid gland: influence of the choice of b-values on the apparent diffusion coefficient value. J Magn Reson Imaging 20:786–790

    PubMed  Google Scholar 

  32. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    Article  CAS  PubMed  Google Scholar 

  33. Ikink ME, Voogt MJ, Verkooijen HM et al (2013) Mid-term clinical efficacy of a volumetric magnetic resonance-guided high-intensity focused ultrasound technique for treatment of symptomatic uterine fibroids. Eur Radiol 23:3054–3061

    Article  PubMed  Google Scholar 

  34. Mougenot C, Quesson B, de Senneville BD et al (2009) Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med 61:603–614

    Article  PubMed  Google Scholar 

  35. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823

    Article  CAS  PubMed  Google Scholar 

  36. Funaki K, Fukunishi H, Funaki T, Sawada K, Kaji Y, Maruo T (2007) Magnetic resonance-guided focused ultrasound surgery for uterine fibroids: relationship between the therapeutic effects and signal intensity of preexisting T2-weighted magnetic resonance images. Am J Obstet Gynecol 196(184):e181–e186

    Google Scholar 

  37. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414

    Article  CAS  PubMed  Google Scholar 

  38. Hynynen K, Colucci V, Chung A, Jolesz F (1996) Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol 22:1071–1077

    Article  CAS  PubMed  Google Scholar 

  39. Luo X, Shen Y, Song WX, Chen PW, Xie XM, Wang XY (2007) Pathologic evaluation of uterine leiomyoma treated with radiofrequency ablation. Int J Gynaecol Obstet 99:9–13

    Article  PubMed  Google Scholar 

  40. Solomon SB, Nicol TL, Chan DY, Fjield T, Fried N, Kavoussi LR (2003) Histologic evolution of high-intensity focused ultrasound in rabbit muscle. Investig Radiol 38:293–301

    Google Scholar 

  41. Koh DM, Takahara T, Imai Y, Collins DJ (2007) Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 6:211–224

    PubMed  Google Scholar 

  42. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488

    PubMed  Google Scholar 

  43. Yang RK, Roth CG, Ward RJ, deJesus JO, Mitchell DG (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics 30:185–199

    Article  PubMed  Google Scholar 

  44. Glockner JF, Hu HH, Stanley DW, Angelos L, King K (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. ir. L.W. Bartels. The authors of this manuscript declare a relationship with the following company: Philips Healthcare (B.K.). The authors state that this work has not received any funding. Philips Healthcare provided financial support for the expenses of the first ten patients, including treatment and follow-up. No complex statistical methods were necessary for this paper.

Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Some study subjects or cohorts have been reported previously by Voogt et al. [10] and Ikink et al. [33].

Methodology: retrospective, observational, multicentre study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlijne E. Ikink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikink, M.E., Voogt, M.J., van den Bosch, M.A.A.J. et al. Diffusion-weighted magnetic resonance imaging using different b-value combinations for the evaluation of treatment results after volumetric MR-guided high-intensity focused ultrasound ablation of uterine fibroids. Eur Radiol 24, 2118–2127 (2014). https://doi.org/10.1007/s00330-014-3274-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3274-y

Keywords

Navigation