Skip to main content
Log in

Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To propose a novel measure, namely the ‘asphericity’ (ASP), of spatial irregularity of FDG uptake in the primary tumour as a prognostic marker in head-and-neck cancer.

Methods

PET/CT was performed in 52 patients (first presentation, n = 36; recurrence, n = 16). The primary tumour was segmented based on thresholding at the volume-reproducible intensity threshold after subtraction of the local background. ASP was used to characterise the deviation of the tumour’s shape from sphere symmetry. Tumour stage, tumour localisation, lymph node metastases, distant metastases, SUVmax, SUVmean, metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were also considered. The association of overall (OAS) and progression-free survival (PFS) with these parameters was analysed.

Results

Cox regression revealed high SUVmax [hazard ratio (HR) = 4.4/7.4], MTV (HR = 4.6/5.7), TLG (HR = 4.8/8.9) and ASP (HR = 7.8/7.4) as significant predictors with respect to PFS/OAS in case of first tumour manifestation. The combination of high MTV and ASP showed very high HRs of 22.7 for PFS and 13.2 for OAS. In case of recurrence, MTV (HR = 3.7) and the combination of MTV/ASP (HR = 4.2) were significant predictors of PFS.

Conclusions

ASP of pretherapeutic FDG uptake in the primary tumour improves the prediction of tumour progression in head-and-neck cancer at first tumour presentation.

Key Points

Asphericity (ASP) characterises the spatial heterogeneity of FDG uptake in tumours

ASP is a promising prognostic parameter in head-and-neck cancer

ASP is useful for identification of high-risk patients with head-and-neck cancer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASP:

Asphericity

FWHM:

Full width at a half of maximum

HR:

Hazard ratio

HPV:

Human papilloma virus

MTV:

Metabolic tumour volume

OAS:

Overall survival

PFS:

Progression-free survival

ROI:

Region of interest

TLG:

Total lesion glycolysis

VOI:

Volume of interest

References

  1. Leclerc M, Maingon P, Hamoir M et al (2013) A dose escalation study with intensity modulated radiation therapy (IMRT) in T2N0, T2N1, T3N0 squamous cell carcinomas (SCC) of the oropharynx, larynx and hypopharynx using a simultaneous integrated boost (SIB) approach. Radiother Oncol J Eur Soc Ther Radiol Oncol 106:333–340

    Article  Google Scholar 

  2. Nishi T, Nishimura Y, Shibata T, Tamura M, Nishigaito N, Okumura M (2013) Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 106:85–89

    Article  Google Scholar 

  3. Gregoire V, Chiti A (2011) Molecular imaging in radiotherapy planning for head and neck tumors. J Nucl Med Off Publ Soc Nucl Med 52:331–334

    Google Scholar 

  4. Abramyuk A, Appold S, Zophel K, Baumann M, Abolmaali N (2013) Modification of staging and treatment of head and neck cancer by FDG-PET/CT prior to radiotherapy. Strahlenther Onkol 189:197–201

    Article  CAS  PubMed  Google Scholar 

  5. Arens AI, Troost EG, Schinagl D, Kaanders JH, Oyen WJ (2011) FDG-PET/CT in radiation treatment planning of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 55:521–528

    CAS  PubMed  Google Scholar 

  6. Chan SC, Chang JT, Lin CY et al (2011) Clinical utility of 18F-FDG PET parameters in patients with advanced nasopharyngeal carcinoma: predictive role for different survival endpoints and impact on prognostic stratification. Nucl Med Commun 32:989–996

    Article  PubMed  Google Scholar 

  7. Schinagl DA, Span PN, Oyen WJ, Kaanders JH (2011) Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 38:1449–1458

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lee JH, Song JH, Lee SN et al (2013) Adjuvant postoperative radiotherapy with or without chemotherapy for locally advanced squamous cell carcinoma of the head and neck: the importance of patient selection for the postoperative chemoradiotherapy. Cancer Res Treat Off J Korean Cancer Assoc 45:31–39

    Google Scholar 

  9. Been MJ, Watkins J, Manz RM et al (2008) Tumor volume as a prognostic factor in oropharyngeal squamous cell carcinoma treated with primary radiotherapy. Laryngoscope 118:1377–1382

    Article  PubMed  Google Scholar 

  10. Knegjens JL, Hauptmann M, Pameijer FA et al (2011) Tumor volume as prognostic factor in chemoradiation for advanced head and neck cancer. Head Neck 33:375–382

    PubMed  Google Scholar 

  11. Vermorken JB, Psyrri A, Mesia R et al (2014) Impact of tumor HPV status on outcome in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck receiving chemotherapy with or without cetuximab: retrospective analysis of the phase III EXTREME trial. Ann Oncol Off J Eur Soc Med Oncol/ESMO 25:801–807

    CAS  Google Scholar 

  12. Pulte D, Brenner H (2010) Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist 15:994–1001

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dibble EH, Alvarez AC, Truong MT, Mercier G, Cook EF, Subramaniam RM (2012) 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med Off Publ Soc Nucl Med 53:709–715

    CAS  Google Scholar 

  14. Imsande HM, Davison JM, Truong MT et al (2011) Use of 18F-FDG PET/CT as a predictive biomarker of outcome in patients with head-and-neck non-squamous cell carcinoma. AJR Am J Roentgenol 197:976–980

    Article  PubMed  Google Scholar 

  15. Lim R, Eaton A, Lee NY et al (2012) 18F-FDG PET/CT metabolic tumor volume and total lesion glycolysis predict outcome in oropharyngeal squamous cell carcinoma. J Nucl Med Off Publ Soc Nucl Med 53:1506–1513

    CAS  Google Scholar 

  16. Higgins KA, Hoang JK, Roach MC et al (2012) Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUVmean has superior prognostic value. Int J Radiat Oncol Biol Phys 82:548–553

    Article  PubMed  Google Scholar 

  17. La TH, Filion EJ, Turnbull BB et al (2009) Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:1335–1341

    Article  PubMed Central  PubMed  Google Scholar 

  18. Haerle SK, Huber GF, Hany TF, Ahmad N, Schmid DT (2010) Is there a correlation between 18F-FDG-PET standardized uptake value, T-classification, histological grading and the anatomic subsites in newly diagnosed squamous cell carcinoma of the head and neck? Eur Arch Otorhinolaryngol 267:1635–1640

    Article  PubMed  Google Scholar 

  19. Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    CAS  PubMed  Google Scholar 

  21. Yang Z, Tang LH, Klimstra DS (2011) Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 35:853–860

    Article  PubMed  Google Scholar 

  22. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140

    Article  PubMed  Google Scholar 

  23. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU (2008) Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med Off Publ Soc Nucl Med 49:1973–1979

    Google Scholar 

  24. El Naqa I, Grigsby P, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171

    Article  Google Scholar 

  25. Huang B, Chan T, Kwong DL, Chan WK, Khong PL (2012) Nasopharyngeal carcinoma: investigation of intratumoral heterogeneity with FDG PET/CT. AJR Am J Roentgenol 199:169–174

    Article  PubMed  Google Scholar 

  26. O’Sullivan F, Roy S, O’Sullivan J, Vernon C, Eary J (2005) Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostatistics 6:293–301

    Article  PubMed  Google Scholar 

  27. Salamon J, Derlin T, Bannas P et al (2013) Evaluation of intratumoural heterogeneity on (18)F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 40:685–692

    Article  CAS  PubMed  Google Scholar 

  28. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med Off Publ Soc Nucl Med 53:693–700

    Google Scholar 

  29. Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med Off Publ Soc Nucl Med 52:369–378

    Google Scholar 

  30. van Baardwijk A, Bosmans G, van Suylen RJ et al (2008) Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol J Eur Soc Ther Radiol Oncol 87:55–58

    Article  Google Scholar 

  31. Vriens D, Disselhorst JA, Oyen WJ, de Geus-Oei LF, Visser EP (2012) Quantitative assessment of heterogeneity in tumor metabolism using FDG-PET. Int J Radiat Oncol Biol Phys 82:e725–e731

    Article  PubMed  Google Scholar 

  32. Miwa K, Inubushi M, Wagatsuma K et al (2014) FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol 83:715–719

    Article  PubMed  Google Scholar 

  33. Barbee DL, Flynn RT, Holden JE, Nickles RJ, Jeraj R (2010) A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function. Phys Med Biol 55:221–236

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hofheinz F, Langner J, Petr J et al (2013) An automatic method for accurate volume delineation of heterogeneous tumors in PET. Med Phys 40:082503

    Article  CAS  PubMed  Google Scholar 

  35. Hofheinz F, Potzsch C, Oehme L et al (2012) Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin/Nucl Med 51:9–16

    Article  CAS  Google Scholar 

  36. Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 59:1295–1300

    Article  CAS  PubMed  Google Scholar 

  37. Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D (2011) Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med Off Publ Soc Nucl Med 52:1690–1697

    Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Prof. W. Brenner. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. Two of the authors have significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board. None of the study subjects or cohorts have been previously reported. Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Ivayla Apostolova and Ingo G. Steffen contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivayla Apostolova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolova, I., Steffen, I.G., Wedel, F. et al. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur Radiol 24, 2077–2087 (2014). https://doi.org/10.1007/s00330-014-3269-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3269-8

Keywords

Navigation