Skip to main content

Advertisement

Log in

Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF).

Methods

Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods.

Results

The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min−1 [100 ml tissue]−1, and using DCE MRI was 287 ± 70 ml min−1 [100 ml tissue]−1. The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement.

Conclusions

The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques.

Key Points

Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable.

Renal arterial spin labelling MRI is robust and repeatable.

Renal dynamic contrast-enhanced MRI is robust and repeatable.

ASL blood flow values are similar to those obtained using DCE-MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peters AM, Brown J, Hartnell GG, Myers MJ, Haskell C, Lavender JP (1987) Non-invasive measurement of renal blood flow with 99mTc DTPA: comparison with radiolabelled microspheres. Cardiovasc Res 21:830–834

    Article  CAS  PubMed  Google Scholar 

  2. Haufe SE, Riedmuller K, Haberkorn U (2006) Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract 103:c77–c84

    Article  PubMed  Google Scholar 

  3. Miles KA (1991) Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 64:409–412

    Article  CAS  PubMed  Google Scholar 

  4. Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849

    Article  PubMed  Google Scholar 

  5. Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123

    Article  PubMed  Google Scholar 

  6. Sourbron S, Dujardin M, Makkat S, Luypaert R (2007) Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447

    Article  CAS  PubMed  Google Scholar 

  7. Tofts PS, Cutajar M, Mendichovszky IA, Peters AM, Gordon I (2012) Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol 22:1320–1330

    Article  PubMed  Google Scholar 

  8. Cowper SE (2013) Nephrogenic systemic fibrosis. http://www.icnfdr.org/

  9. Mendichovszky IA, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581

    Article  CAS  PubMed  Google Scholar 

  10. Cutajar M, Mendichovszky IA, Tofts PS, Gordon I (2010) The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160

    Article  CAS  PubMed  Google Scholar 

  11. Garpebring A, Wirestam R, Ostlund N, Karlsson M (2011) Effects of inflow and radiofrequency spoiling on the arterial input function in dynamic contrast-enhanced MRI: a combined phantom and simulation study. Magn Reson Med 65:1670–1679

    Article  PubMed  Google Scholar 

  12. Mendichovszky I, Pedersen M, Frokiaer J, Dissing T, Grenier N, Anderson P et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931

    Article  PubMed  Google Scholar 

  13. Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  14. Petersen ET, Zimine I, Ho YC, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701

    Article  CAS  PubMed  Google Scholar 

  15. Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A et al (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82

    Article  PubMed Central  PubMed  Google Scholar 

  16. De BC, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma (1). Acad Radiol 12:347–357

    Article  Google Scholar 

  17. Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Imaging 63:1627–1636

    Google Scholar 

  18. Karger N, Biederer J, Lusse S, Grimm J, Steffens J, Heller M et al (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647

    Article  CAS  PubMed  Google Scholar 

  19. Lanzman RS, Wittsack HJ, Martirosian P, Zgoura P, Bilk P, Kropil P et al (2010) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485–1491

    Article  PubMed  Google Scholar 

  20. Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI et al (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021

    Article  PubMed  Google Scholar 

  21. Pedrosa I, Alsop DC, Rofsky NM (2009) Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer 115:2334–2345

    Article  PubMed  Google Scholar 

  22. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361

    Article  PubMed  Google Scholar 

  23. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301

    Article  CAS  PubMed  Google Scholar 

  24. Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498

    Article  PubMed  Google Scholar 

  25. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  CAS  PubMed  Google Scholar 

  26. MacIntosh BJ, Lindsay AC, Kylintireas I, Kuker W, Gunther M, Robson MD et al (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31:1892–1894

    Article  CAS  PubMed  Google Scholar 

  27. Winter JD, St Lawrence KS, Cheng HL (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:608–615

    Article  PubMed  Google Scholar 

  28. Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853

    Article  PubMed  Google Scholar 

  29. Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK et al (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K et al (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159

    Article  CAS  PubMed  Google Scholar 

  31. Piepsz A, Blaufox MD, Gordon I, Granerus G, Majd M, O'Reilly P et al (1999) Consensus on renal cortical scintigraphy in children with urinary tract infection. Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:160–174

    Article  CAS  PubMed  Google Scholar 

  32. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100

    Article  CAS  PubMed  Google Scholar 

  33. Sourbron S, Biffar A, Ingrisch M, Fierens Y, Luypaert R (2009) PMI platform for research in medical imaging. MAGMA 22:539, Abstract

    Google Scholar 

  34. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  35. Tofts PS (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease. John Wiley, Chichester, p 63

    Google Scholar 

  36. Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 25:145–153

    Article  PubMed  Google Scholar 

  37. Zhang JL, Rusinek H, Bokacheva L, Chen Q, Storey P, Lee VS (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:656–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48:27–41

    Article  PubMed  Google Scholar 

  39. Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kidney Research UK for their generous funding and Dr. Martin King for advice on statistical analyses. We would also like to thank Dr. Matthias Günther for providing the 3D GRASE ASL pulse sequence.

The scientific guarantor of this publication is Dr. Christopher Clark. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by Kidney Research UK. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (healthy volunteers) in this study. Some study subjects or cohorts have been previously reported by Cutajar et al. [36]. This was an observational study performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marica Cutajar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutajar, M., Thomas, D.L., Hales, P.W. et al. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24, 1300–1308 (2014). https://doi.org/10.1007/s00330-014-3130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3130-0

Keywords

Navigation