Skip to main content

Advertisement

Log in

3-T breast magnetic resonance imaging in patients with suspicious microcalcifications on mammography

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the diagnostic value of 3-Tesla (T) breast MRI in patients presenting with microcalcifications on mammography.

Methods

Between January 2006 and May 2009, 123 patients with mammographically detected BI-RADS 3–5 microcalcifications underwent 3-T breast MRI before undergoing breast biopsy. All MRIs of the histopathologically confirmed index lesions were reviewed by two breast radiologists. The detection rate of invasive carcinoma and ductal carcinoma in situ (DCIS) was evaluated, as well as the added diagnostic value of MRI over mammography and breast ultrasound.

Results

At pathology, 40/123 (33 %) lesions proved malignant; 28 (70 %) DCIS and 12 (30 %) invasive carcinoma. Both observers detected all invasive malignancies at MRI, as well as 79 % (observer 1) and 86 % (observer 2) of in situ lesions. MRI in addition to conventional imaging led to a significant increase in area under the receiver operating characteristic (ROC) curve from 0.67 (95 % CI 0.56–0.79) to 0.79 (95 % CI 0.70–0.88, observer 1) and to 0.80 (95 % CI 0.71–0.89, observer 2), respectively.

Conclusions

3-T breast MRI was shown to add significant value to conventional imaging in patients presenting with suspicious microcalcifications on mammography.

Key points

• 3-T MRI is increasingly used for breast imaging in clinical practice.

• On 3-T breast MRI up to 86 % of DCIS lesions are detected.

• 3-T MRI increases the diagnostic value in patients with mammographically detected microcalcifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bluekens AM, Holland R, Karssemeijer N, Broeders MJ, den Heeten GJ (2012) Comparison of digital screening mammography and screen-film mammography in the early detection of clinically relevant cancers: a multicenter study. Radiology 265:707–714

    Article  PubMed  Google Scholar 

  2. Stomper PC, Connolly JL, Meyer JE, Harris JR (1989) Clinically occult ductal carcinoma in situ detected with mammography: analysis of 100 cases with radiologic-pathologic correlation. Radiology 172:235–241

    CAS  PubMed  Google Scholar 

  3. Verschuur-Maes AH, van Gils CH, van den Bosch MA, De Bruin PC, van Diest PJ (2011) Digital mammography: more microcalcifications, more columnar cell lesions without atypia. Mod Pathol 24:1191–1197

    Article  PubMed  Google Scholar 

  4. Feeley L, Kiernan D, Mooney T et al (2011) Digital mammography in a screening programme and its implications for pathology: a comparative study. J Clin Pathol 64:215–219

    Article  PubMed  Google Scholar 

  5. Kuzmiak CM, Dancel R, Pisano E et al (2006) Consensus review: a method of assessment of calcifications that appropriately undergo a six-month follow-up. Acad Radiol 13:621–629

    Article  PubMed  Google Scholar 

  6. Bagnall MJ, Evans AJ, Wilson AR et al (2001) Predicting invasion in mammographically detected microcalcification. Clin Radiol 56:828–832

    Article  CAS  PubMed  Google Scholar 

  7. Akita A, Tanimoto A, Jinno H, Kameyama K, Kuribayashi S (2009) The clinical value of bilateral breast MR imaging: is it worth performing on patients showing suspicious microcalcifications on mammography? Eur Radiol 19:2089–2096

    Article  PubMed  Google Scholar 

  8. Cilotti A, Iacconi C, Marini C et al (2007) Contrast-enhanced MR imaging in patients with BI-RADS 3-5 microcalcifications. Radiol Med 112:272–286

    Article  CAS  PubMed  Google Scholar 

  9. Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124

    Article  PubMed  Google Scholar 

  10. Bazzocchi M, Zuiani C, Panizza P et al (2006) Contrast-enhanced breast MRI in patients with suspicious microcalcifications on mammography: results of a multicenter trial. AJR Am J Roentgenol 186:1723–1732

    Article  PubMed  Google Scholar 

  11. Westerhof JP, Fischer U, Moritz JD, Oestmann JW (1998) MR imaging of mammographically detected clustered microcalcifications: is there any value? Radiology 207:675–681

    CAS  PubMed  Google Scholar 

  12. Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18:1307–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology 239:666–676

    Article  PubMed  Google Scholar 

  14. Uematsu T, Kasami M, Yuen S, Igarashi T, Nasu H (2012) Comparison of 3- and 1.5-T dynamic breast MRI for visualization of spiculated masses previously identified using mammography. AJR Am J Roentgenol 198:W611–W617

    Article  PubMed  Google Scholar 

  15. Peters NH, Borel Rinkes IH, Mali WP et al (2007) Breast MRI in nonpalpable breast lesions: a randomized trial with diagnostic and therapeutic outcome – MONET – study. Trials 8:40

    Article  PubMed Central  PubMed  Google Scholar 

  16. Peters NH, van Esser S, van den Bosch MA et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET – randomised controlled trial. Eur J Cancer 47:879–886

    Article  CAS  PubMed  Google Scholar 

  17. Molleran V, Mahoney MC (2010) The BI-RADS breast magnetic resonance imaging lexicon. Magn Reson Imaging Clin N Am 18:171–185, vii

    Article  PubMed  Google Scholar 

  18. Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    Article  CAS  PubMed  Google Scholar 

  19. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379

    Article  CAS  PubMed  Google Scholar 

  20. Hosmer DW, Lemeshow S (1989) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  21. Jansen SA, Paunesku T, Fan X et al (2009) Ductal carcinoma in situ: X-ray fluorescence microscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model. Radiology 253:399–406

    Article  PubMed  Google Scholar 

  22. Raza S, Vallejo M, Chikarmane SA, Birdwell RL (2008) Pure ductal carcinoma in situ: a range of MRI features. AJR Am J Roentgenol 191:689–699

    Article  PubMed  Google Scholar 

  23. Yamada T, Mori N, Watanabe M et al (2010) Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics 30:1183–1198

    Article  PubMed  Google Scholar 

  24. Newstead GM (2010) MR imaging of ductal carcinoma in situ. Magn Reson Imaging Clin N Am 18:225–240, viii

    Article  PubMed  Google Scholar 

  25. Jansen SA, Newstead GM, Abe H et al (2007) Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology 245:684–691

    Article  PubMed  Google Scholar 

  26. Zhu J, Kurihara Y, Kanemaki Y et al (2007) Diagnostic accuracy of high-resolution MRI using a microscopy coil for patients with presumed DCIS following mammography screening. J Magn Reson Imaging 25:96–103

    Article  PubMed  Google Scholar 

  27. Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492

    Article  PubMed  Google Scholar 

  28. Wang LC, Sullivan M, Du H, Feldman MI, Mendelson EB (2013) US appearance of ductal carcinoma in situ. RadioGraphics 33:213–228

    Article  PubMed  Google Scholar 

  29. Fatemi-Ardekani A, Boylan C, Noseworthy MD (2009) Identification of breast calcification using magnetic resonance imaging. Med Phys 36:5429–5436

    Article  CAS  PubMed  Google Scholar 

  30. James D, Clymer BD, Schmalbrock P (2001) Texture detection of simulated microcalcification susceptibility effects in magnetic resonance imaging of breasts. J Magn Reson Imaging 13:876–881

    Article  CAS  PubMed  Google Scholar 

  31. Mende J, Wild J, Ulucay D et al (2010) Acoustic radiation force contrast in MRI: detection of calcifications in tissue-mimicking phantoms. Med Phys 37:6347–6356

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The patient data have been used in the publication of the MONET trial: Peters et al., Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET – randomised controlled trial. Eur J Cancer 47:879–86.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Stehouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stehouwer, B.L., Merckel, L.G., Verkooijen, H.M. et al. 3-T breast magnetic resonance imaging in patients with suspicious microcalcifications on mammography. Eur Radiol 24, 603–609 (2014). https://doi.org/10.1007/s00330-013-3029-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3029-1

Keywords

Navigation