Skip to main content
Log in

A prospective feasibility study of sub-millisievert abdominopelvic CT using iterative reconstruction in Crohn’s disease

  • GASTROINTESTINAL
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

Iterative reconstruction (IR) allows diagnostic CT imaging with less radiation exposure than filtered back projection (FBP). We studied an IR low-dose CT abdomen/pelvis (LDCTAP) protocol, designed to image at an effective dose (ED) approximating 1 mSv in patients with Crohn’s disease (CD).

Methods

Forty patients, mean age 37 ± 13.4 years (range 17–69), with CD underwent two synchronous CT protocols (conventional-dose (CDCTAP) and LDCTAP). CDCTAP and LDCTAP images were compared for diagnostic acceptability, yield, image quality and ED (in millisieverts). The optimal level of IR for LDCTAP was also studied.

Results

LDCTAP yielded a mean ED of 1.3 ± 0.8 mSv compared with 4.7 ± 2.9 mSv for CDCTAP, reducing ED by 73.7 ± 3.3 % (mean dose reduction, 3.5 ± 2.1 mSv; P < 0.001) and dose length product by 73.6 ± 2.6 % (P < 0.001). Sub-millisievert (0.84 mSv) imaging was performed for patients with a body mass index (BMI) less than 25 (i.e. 63 % of our cohort). LDCTAP resulted in increased image noise and reduced diagnostic acceptability compared with CDCTAP despite use of IR, but detection of extra-luminal complications was comparable.

Conclusion

Patients with suspected active CD can be adequately imaged using LDCTAP, yielding comparable information regarding extent, activity and complications of CD compared with CDCTAP, but with 74 % less dose. LDCTAP at doses equivalent to that of two abdominal radiographs represents a feasible alternative to CDCTAP.

Key points

Radiation dose is a concern when imaging patients with Crohn’s disease.

New techniques allow low-dose abdominopelvic CT with acceptable image quality.

Using hybrid iterative reconstruction, its diagnostic yield compares well with that of conventional CT.

Sub-millisievert CT of patients with Crohn’s disease appears technically and clinically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huprick JE, Rosen MP, Fidler JL et al (2010) ACR appropriateness criteria on Crohn’s disease. J Am Coll Radiol 7:94–102

    Article  Google Scholar 

  2. Schreyer SG, Seitz J, Feuerbach S et al (2004) Modern imaging using computer tomography and magnetic resonance imaging for inflammatory bowel disease (IBD). Inflamm Bowel Dis 10:45–54

    Article  PubMed  Google Scholar 

  3. Desmond AN, O’ Regan K, Curran C et al (2008) Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut 57:1524–9

    Article  PubMed  CAS  Google Scholar 

  4. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  PubMed  CAS  Google Scholar 

  5. Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–63

    Article  PubMed  Google Scholar 

  6. Leyendecker JR, Bloomfeld RS, DiSantis DJ et al (2009) MR enterography in the management of patients with Crohn disease. Radiographics 29:1827–46

    Article  PubMed  Google Scholar 

  7. Fidler JL, Guimaraes L, Einstein DM (2009) MR imaging of the small bowel. Radiographics 29:1811–25

    Article  PubMed  Google Scholar 

  8. Prassopoulos P, Papanikolaou N, Grammatikakis J et al (2001) MR enteroclysis imaging of Crohn disease. Radiographics 21 Spec No:S161–72

    Google Scholar 

  9. Van Assche G, Dignass A, Panes J et al (2010) The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. J Crohns Colitis 4:7–27

    Article  PubMed  Google Scholar 

  10. McCollough CH, Primak AN, Braun N et al (2009) Strategies for reducing radiation dose in CT. Radiol Clin North Am 194:191–9

    Google Scholar 

  11. Fleischmann D, Boas FE (2011) Computed tomography – old ideas and new technology. Eur Radiol 21:510–7

    Article  PubMed  Google Scholar 

  12. Silva AC, Lawder HJ, Hara A (2010) Innovations in CT dose reduction strategy: application of adaptive statistical iterative reconstruction algorithm. AJR AM J Roentgenol 194:191–9

    Article  PubMed  Google Scholar 

  13. Desai GS, Uppot RN, Yu EW et al (2012) Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults. Eur Radiol 22:1631–40

    Article  PubMed  Google Scholar 

  14. Mitsumori LM, Shuman WP, Busey JM et al (2012) Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol 22:138–43

    Article  PubMed  Google Scholar 

  15. Winklehner A, Karlo C, Puippe G et al (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21:2521–6

    Article  PubMed  Google Scholar 

  16. Desmond AN, O’Regan K, Malik N et al (2012) Selection of symptomatic patients with Crohn’s disease for abdominopelvic computed tomography: role of serum C-reactive protein. Can Assoc Radiol J 63:267–74

    Article  PubMed  Google Scholar 

  17. Bongartz G, Golding SJ, Jurik AG et al (2000) European guidelines on quality criteria for computed tomography, EUR 16262. The European Commission’s Study Group on Development of Quality Criteria for Computed Tomography. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  18. Bongartz G, Golding SJ, Jurik AG et al (2004) 2004 CT quality criteria. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  19. Prakash P, Kalra MK, Kambadakone AK et al (2010) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 45:202–10

    Article  PubMed  Google Scholar 

  20. Singh S, Kalra MK, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–83

    Article  PubMed  Google Scholar 

  21. Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237:303–8

    Article  PubMed  Google Scholar 

  22. Kalra MK, Maher MM, Kamath RS et al (2004) 16-slice multidetector-row CT of the abdomen and pelvis: a study for optimization of z-axis modulation technique in 153 subjects. Radiology 233:241–249

    Article  PubMed  Google Scholar 

  23. Kalra MK, Maher MM, Toth TL et al (2004) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 232:347–53

    Article  PubMed  Google Scholar 

  24. Marin D, Nelson RC, Schindera ST et al (2010) Low-tube voltage, high tube current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm – initial clinical experience. Radiology 254:145–53

    Article  PubMed  Google Scholar 

  25. Nakayama Y, Awai K, Funama Y et al (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol 187:W490–7

    Article  PubMed  Google Scholar 

  26. Jackson VP, Cushing T, Abujudeh HH et al (2009) RADPEER scoring white paper. J Am Coll Radiol 6:21–5

    Article  PubMed  Google Scholar 

  27. Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–84

    Article  PubMed  CAS  Google Scholar 

  28. Kinsella SM, Coyle JP, Long EB et al (2010) Maintenance haemodialysis patients have high cumulative radiation exposure. Kidney Int 78:789–93

    Article  PubMed  Google Scholar 

  29. O’Connell OJ, McWilliams S, McGarrigle A et al (2012) Radiologic imaging in cystic fibrosis: cumulative effective dose and changing trends over 2 decades. Chest 141:1575–83

    Article  PubMed  Google Scholar 

  30. O’Regan K, O’Connor OJ, O’Neill SB et al (2012) Plain abdominal radiographs in patients with Crohn’s disease: radiological findings and diagnostic value. Clin Radiol 67:774–81

    Article  PubMed  Google Scholar 

  31. Flicek KT, Hara AK, Silva AC et al (2010) Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. AJR Am J Roentgenol 195:126–31

    Article  PubMed  Google Scholar 

  32. Hara AK, Paden RG, Silva AC et al (2009) Iterative reconstruction techniques for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193:764–71

    Article  PubMed  Google Scholar 

  33. May MS, Wust W, Brand M et al (2011) Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol 46:465–70

    Article  PubMed  Google Scholar 

  34. Sagara Y, Hara AK, Pavlicek W et al (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–9

    Article  PubMed  Google Scholar 

  35. Schindera ST, Nelson RC, DeLong DM et al (2007) Multi-detector row CT of the small bowel: peak enhancement temporal window—initial experience. Radiology 243:438–44

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Jackie Bye is an employee of GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M Maher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, S.B., Mc Laughlin, P.D., Crush, L. et al. A prospective feasibility study of sub-millisievert abdominopelvic CT using iterative reconstruction in Crohn’s disease. Eur Radiol 23, 2503–2512 (2013). https://doi.org/10.1007/s00330-013-2858-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2858-2

Keywords

Navigation