Skip to main content
Log in

Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the low-dose biplanar (LDB) skeletal survey (SS) for the assessment of focal bone involvement in patients with multiple myeloma (MM) as compared with digital SS and to compare the two techniques in terms of image quality, patient comfort and radiation exposure.

Methods

Fifty-six consecutive patients with newly diagnosed or first relapsed MM underwent LDB and digital SS on the same day. These were assessed by two radiologists for the detection of focal bone lesions. In the case of discordance, whole-body MR imaging was performed. Image quality, patient comfort and radiation dose were also assessed.

Results

Fifty-six patients (M:30, F:26, mean age, 62 years) with newly diagnosed (n = 21) or first relapse MM (n = 35) were enrolled. A total of 473 bone lesions in 46 patients (82 %) were detected. Out of that total, digital SS detected significantly more lesions than LDB SS (451 [95.35 %] versus 467 [98.73 %]), especially in osteopenic and obese patients. Overall patient satisfaction was greater with LDB SS (48.6 %) compared with digital SS (2.7 %). The radiation dose was significantly reduced (by a factor of 7.8) with the LDB X-ray device.

Conclusions

Low-dose biplanar skeletal surveys cannot replace digital SS in all patients suffering from multiple myeloma.

Key Points

Low-dose biplanar skeletal surveys can readily assess bone lesions in multiple myeloma.

In marked radiographic osteopenia and obesity, LDB SS diagnostic performance is reduced.

Low-dose biplanar skeletal surveys cannot yet replace digital SS in all MM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MM:

Multiple myeloma

SS:

Skeletal survey

LDB:

Low-dose biplanar

References

  1. Kyle RA, Gertz MA, Witzig TE et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78:21–33

    Article  PubMed  Google Scholar 

  2. Dimopoulos M, Kyle R, Fernand JP et al (2011) Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 117:4701–4705

    Article  PubMed  CAS  Google Scholar 

  3. Rajkumar SV, Kyle RA (2005) Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 80:1371–1382

    Article  PubMed  Google Scholar 

  4. Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36:842–854

    Article  PubMed  CAS  Google Scholar 

  5. Fruehwald FX, Tscholakoff D, Schwaighofer B et al (1988) Magnetic resonance imaging of the lower vertebral column in patients with multiple myeloma. Invest Radiol 23:193–199

    Article  PubMed  CAS  Google Scholar 

  6. Ludwig H, Frühwald F, Tscholakoff D, Rasoul S, Neuhold A, Fritz E (1987) Magnetic resonance imaging of the spine in multiple myeloma. Lancet 2:364–366

    Article  PubMed  CAS  Google Scholar 

  7. Lecouvet FE, Malghem J, Michaux L et al (1999) Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 106:35–39

    Article  PubMed  CAS  Google Scholar 

  8. Moulopoulos LA, Dimopoulos MA, Alexanian R, Leeds NE, Libshitz HI (1994) Multiple myeloma: MR patterns of response to treatment. Radiology 193:441–446

    PubMed  CAS  Google Scholar 

  9. Tertti R, Alanen A, Remes K (1995) The value of magnetic resonance imaging in screening myeloma lesions of the lumbar spine. Br J Haematol 91:658–660

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753

    Article  PubMed  Google Scholar 

  11. Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55:33–40

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt GP, Reiser MF, Baur-Melnyk A (2007) Whole-body imaging of the musculoskeletal system; the value of MR imaging. Skeletal Radiol 36:1109–1119

    Article  PubMed  Google Scholar 

  13. Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for stating of multiple myeloma. AJR 190:1097–1104

    Article  PubMed  Google Scholar 

  14. Ghanem N, Lohrmann C, Engelhardt et al (2006) Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 16:1005–1014

    Article  PubMed  Google Scholar 

  15. Mahnken AH, Wildberger JE, Gehbauer G et al (2002) Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. AJR 178:1429–1436

    Article  PubMed  CAS  Google Scholar 

  16. Horger M, Claussen CD, Bross-Bach U et al (2005) Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol 54:289–297

    Article  PubMed  Google Scholar 

  17. Kröpil P, Fenk R, Fritz LB et al (2008) Comparison of whole-body 64-slice multidetector computed tomography and conventional radiography in staging of multiple myeloma. Eur Radiol 18:51–58

    Article  PubMed  Google Scholar 

  18. Gleeson TG, Moriarty J, Shortt CP et al (2009) Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlations of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 38:225–236

    Article  PubMed  CAS  Google Scholar 

  19. Sager S, Ergül N, Ciftci H, Cetin G, Güner SI, Cermik TF (2011) The value of FDG PET/CT in the initial staging and bone marrow involvement of patients with multiple myeloma. Skeletal Radiol 40:843–847

    Article  PubMed  Google Scholar 

  20. Haznedar R, Aki SZ, Akdemir OU et al (2011) Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging 38:1046–1053

    Article  PubMed  CAS  Google Scholar 

  21. Durie BG (2006) The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 42:1539–1543

    Article  PubMed  Google Scholar 

  22. Delorme S, Baur-Melnyk A (2011) Imaging in multiple myeloma. Recent Results Cancer Res 183:133–147

    Article  PubMed  Google Scholar 

  23. Lütje S, de Rooy JW, Croockewit S, Koedam E, Oyen WJ, Raymakers RA (2009) Role of radiography, MRI and FGD-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol 88:1161–1168

    Article  PubMed  Google Scholar 

  24. Healy CF, Murray JG, Eustace SJ, Madewell J, O’Gorman PJ, O’Sullivan P (2011) Multiple myeloma: a review of imaging features and radiological techniques. Bone Marrow Res 2011: 583439

  25. Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23:3–9

    Article  PubMed  CAS  Google Scholar 

  26. Aubin CE, Dansereau J, Parent F, Labelle H, de Guise JA (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618

    Article  PubMed  CAS  Google Scholar 

  27. Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189:287–297

    PubMed  Google Scholar 

  28. Dumas R, Aissaoui R, Mitton D, Skalli W, de Guise JA (2005) Personalized body segment parameters from biplanar low-dose radiography. IEEE Trans Biomed Eng 52:1756–1763

    Article  PubMed  Google Scholar 

  29. Baudoin A, Skalli W, de Guise JA, Mitton D (2008) Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Med Biol Eng Comput 46:799–805

    Article  PubMed  CAS  Google Scholar 

  30. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687

    Article  PubMed  CAS  Google Scholar 

  31. Glaser DA, Doan J, Newton PO (2012) Comparison of 3D spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine 37:1391–1397

    Article  PubMed  Google Scholar 

  32. McKenna C, Wade R, Faria R et al (2012) EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess 16:1–188

    CAS  Google Scholar 

  33. Ilharreborde B, Steffen JS, Nectoux E et al (2011) Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine 36:1306–1313

    Article  Google Scholar 

  34. Illés T, Tunyogi-Csapó M, Somoskeöy S (2011) Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 20:135–143

    Article  PubMed  Google Scholar 

  35. Gheno R, Nectoux E, Herbaux B et al (2012) Three-dimensional measurements of the lower extremity in children and adolescents using a LDBX-ray device. Eur Radiol 22:765–771

    Article  PubMed  Google Scholar 

  36. Than P, Szuper K, Somoskeöy S, Warta V, Illlés T (2011) Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int Orthop 36:1291–1297

    Article  PubMed  Google Scholar 

  37. Deschênes S, Charron G, Beaudoin G et al (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35:989–994

    Article  PubMed  Google Scholar 

  38. Bird JM, Owen RG, D’Sa S et al (2011) Guidelines for the diagnosis and management of multiple myeloma 2011. Br J Haematol 154:32–75

    Article  PubMed  CAS  Google Scholar 

  39. Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec JY (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93:141–143

    Article  PubMed  CAS  Google Scholar 

  40. Pitcher RD, van As AB, Sanders V et al (2008) A pilot study evaluating the “STATSCAN” digital X-ray machine in paediatric polytrauma. Emerg Radiol 15:35–42

    Article  PubMed  Google Scholar 

  41. Deyle S, Brehmer T, Evangelopoulos DS et al (2010) Review of Lodox Statscan in the detection of peripheral skeletal fractures in multiple injury patients. Injury 41:818–822

    Article  PubMed  CAS  Google Scholar 

  42. Evangelopoulos DS, von Tobel M, Cholewa D et al (2010) Impact of Lodox Statscan on radiation dose and screening time in paediatric trauma patients. Eur J Pediatr Surg 20:382–386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Boutry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutry, N., Dutouquet, B., Leleu, X. et al. Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma. Eur Radiol 23, 2236–2245 (2013). https://doi.org/10.1007/s00330-013-2812-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2812-3

Keywords

Navigation