Skip to main content
Log in

Changes in AVM angio-architecture and hemodynamics after stereotactic radiosurgery assessed by dynamic MRA and phase contrast flow assessments

A prospective follow-up study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Assessment of changes in the hemodynamics of Arteriovenous malformations (AVM) induced by radiosurgery by MR Phase contrast (PC) measurements of the internal carotid arteries (ICA).

Methods

65 patients shortly after or before stereotactic radiosurgery underwent MRI including morphological series, MR-Angiography (Time-of-flight, dynamic MRA) and bilateral ECG triggered MR phase contrast (PC) measurements of the ICA. Follow-up was performed in 34 patients. The observation period was up to 4 years.

Results

Over all subjects, a significant relationship between mean arterial blood flow in the ICA on the side of the lesion and AVM volume was revealed (p = 0,0002). In large (>10 ccm) and medium-sized AVMs, (>3, 5 ≤10 ccm) the blood flow was significantly increased on the side of the AVM (p = 0,0004; p = 0,047), whereas in lesions <3, 5 ccm, no significant rise of the mean blood flow was detectable. At follow-up, the mean blood flow in the ipsilateral artery was not increased anymore compared to the contralateral ICA (p = 0,11). These changes correlated with a significant reduction of the average AVM volume (p = 0, 0026).

Conclusions

The AVM angioarchitecture has significant impact on the blood flow in feeding arteries. A significant reduction of the shunt volume by successful radiotherapy leads to normalization of the hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ondra SL, Troupp H, George ED, Schwab K (1990) The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 73:387–391

    Article  PubMed  CAS  Google Scholar 

  2. Davis CH, Symon L (1985) The management of cerebral arteriovenous malformations. Acta Neurochir 74:4–11

    Article  CAS  Google Scholar 

  3. Wenz F, Steinvorth S, Wildermuth S et al (1998) Assessment of neuropsychological changes in patients with arteriovenous malformation (AVM) after radiosurgery. Int J Radiat Oncol Biol Phys 42:995–999

    Article  PubMed  CAS  Google Scholar 

  4. Auger RG, Wiebers DO (1992) Management of unruptured intracranial arteriovenous malformations: a decision analysis. Neurosurgery 30:561–569

    Article  PubMed  CAS  Google Scholar 

  5. Han PP, Ponce FA, Spetzler RF (2003) Intention-to-treat analysis of Spetzler-Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J Neurosurg 98:3–7

    Article  PubMed  Google Scholar 

  6. Duran M, Schoenberg SO, Yuh WT, Knopp MV, van Kaick G, Essig M (2002) Cerebral arteriovenous malformations: morphologic evaluation by ultrashort 3D gadolinium-enhanced MR angiography. Eur Radiol 12:2957–2964

    PubMed  CAS  Google Scholar 

  7. Guo WY, Lee SM, Chang YC, Pan HC (2006) The impact of arteriovenous malformation radiosurgery on the brain: from morphology and perfusion to neurocognition. Stereotact Funct Neurosurg 84:162–169

    Article  PubMed  CAS  Google Scholar 

  8. Essig M, Engenhart R, Knopp MV et al (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14:227–233

    Article  PubMed  CAS  Google Scholar 

  9. Hassler W, Steinmetz H (1987) Cerebral hemodynamics in angioma patients: an intraoperative study. J Neurosurg 67:822–831

    Article  PubMed  CAS  Google Scholar 

  10. Essig M, Wenz F, Schoenberg SO, Debus J, Knopp MV, Van Kaick G (2000) Arteriovenous malformations: assessment of gliotic and ischemic changes with fluid-attenuated inversion-recovery MRI. Invest Radiol 35:689–694

    Article  PubMed  CAS  Google Scholar 

  11. Nornes H, Grip A (1980) Hemodynamic aspects of cerebral arteriovenous malformations. J Neurosurg 53:456–464

    Article  PubMed  CAS  Google Scholar 

  12. Kader A, Young WL (1996) The effects of intracranial arteriovenous malformations on cerebral hemodynamics. Neurosurg Clin N Am 7:767–781

    PubMed  CAS  Google Scholar 

  13. Kader A, Young WL, Pile-Spellman J et al (1994) The influence of hemodynamic and anatomic factors on hemorrhage from cerebral arteriovenous malformations. Neurosurgery 34:801–807, Discussion 807–808

    Article  PubMed  CAS  Google Scholar 

  14. Bartels E, Knauth M (2006) Transcranial color-coded duplex ultrasonography of arteriovenous malformations. Rofo 178:64–70

    PubMed  CAS  Google Scholar 

  15. Rothoerl RD, Schebesch KM, Woertgen C, Brawanski A (2005) Ultrasonic blood flow volume assessment in the extracranial internal carotid artery in arteriovenous malformations. Neurol Res 27:209–211

    Article  PubMed  CAS  Google Scholar 

  16. Gilroy J, Bauer RB, Krabbenhoft KL, Meyer JS (1963) Cerebral circulation time in cerebral vascular disease measured by serial angiography. Am J Roentgenol Radium Ther Nucl Med 90:490–505

    PubMed  CAS  Google Scholar 

  17. Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J (2006) Stereotactic linac-based radiosurgery in the treatment of cerebral arteriovenous malformations located deep, involving corpus callosum, motor cortex, or brainstem. Int J Radiat Oncol Biol Phys 64:1044–1048

    Article  PubMed  Google Scholar 

  18. Friedman WA, Bova FJ, Mendenhall WM (1995) Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg 82:180–189

    Article  PubMed  CAS  Google Scholar 

  19. Pollock BE, Gorman DA, Coffey RJ (2003) Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery 52:1291–1296, discussion 1296–1297

    Article  PubMed  Google Scholar 

  20. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (2002) An analysis of the dose response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 63:347–354

    Article  PubMed  Google Scholar 

  21. Guo WY, Pan DH, Liu RS et al (1995) Early irradiation effects observed on magnetic resonance imaging and angiography, and positron emission tomography for arteriovenous malformations treated by Gamma Knife radiosurgery. Stereotact Funct Neurosurg 64(Suppl 1):258–269

    PubMed  Google Scholar 

  22. Wakhloo AK, Lieber BB, Rudin S, Fronckowiak MD, Mericle RA, Hopkins LN (1998) A novel approach to flow quantification in brain arteriovenous malformations prior to enbucrilate embolization: use of insoluble contrast (Ethiodol droplet) angiography. J Neurosurg 89:395–404

    Article  PubMed  CAS  Google Scholar 

  23. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    PubMed  Google Scholar 

  24. Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Zuna I, Schad L, Allenberg JR, Van Kaick G (1997) Einstufung hämodynamischer Veränderungen bei Nierenarterienstenosen mittels MR-Cine-Phasenkontrastmessungen. Radiologe 37:651–662

    Article  PubMed  CAS  Google Scholar 

  25. Dumoulin CL (1995) Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am 3:399–411

    PubMed  CAS  Google Scholar 

  26. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238

    Article  PubMed  CAS  Google Scholar 

  27. Manchola IF, De Salles AA, Foo TK, Ackerman RH, Candia GT, Kjellberg RN (1993) Arteriovenous malformation hemodynamics: a transcranial Doppler study. Neurosurgery 33:556–562, discussion 562

    Article  PubMed  CAS  Google Scholar 

  28. Feindel W, Tamamoto YL, Hodge CP (1971) Red cerebral veins and the cerebral steal syndrome. Evidence from fluorescein angiography and microregional blood flow by radioisotopes during excision of an angioma. J Neurosurg 35:167–179

    Article  PubMed  CAS  Google Scholar 

  29. Poek K, Hacke W (2001) Neurologie. Springer-Verlag 257–262

  30. Wowra B, Muacevic A, Tonn JC, Schoenberg SO, Reiser M, Herrmann KA (2009) Obliteration dynamics in cerebral arteriovenous malformations after cyberknife radiosurgery: quantification with sequential nidus volumetry and 3-tesla 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery 64:A102–A109

    Article  PubMed  Google Scholar 

  31. Nagaraja S, Lee KJ, Coley SC et al (2006) Stereotactic radiosurgery for brain arteriovenous malformations: quantitative MR assessment of nidal response at 1 year and angiographic factors predicting early obliteration. Neuroradiology 48:821–829

    Article  PubMed  CAS  Google Scholar 

  32. Schneider BF, Eberhard DA, Steiner LE (1997) Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 87:352–357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lydia Schuster or Marco Essig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, L., Schenk, E., Giesel, F. et al. Changes in AVM angio-architecture and hemodynamics after stereotactic radiosurgery assessed by dynamic MRA and phase contrast flow assessments. Eur Radiol 21, 1267–1276 (2011). https://doi.org/10.1007/s00330-010-2031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-2031-0

Keywords

Navigation