Skip to main content
Log in

Indeterminate adnexal masses at ultrasound: effect of MRI imaging findings on diagnostic thinking and therapeutic decisions

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the impact of MRI including DWI on therapeutic decision-making and costs in the work-up of patients with a indeterminate adnexal mass on ultrasound.

Methods

Thirty-eight patients with indeterminate ovarian lesions scheduled for surgery were included in this prospective study. In a questionnaire, the surgeon characterised the lesions based on a morphological score and determined the surgical procedure. The assessment was re-evaluated knowing MR findings and correlated with the final diagnosis. A cost-benefit analysis of MRI was performed. The impact of including DWI in the MR protocol was assessed.

Results

MRI provided major diagnostic information in 11/38 cases (28.9%) resulting in abstention from surgery in 5 cases; moderate additional information was recorded in 10/38 (26.3%) patients. Overall a net cost saving (3’676 EUR) was achieved. DWI did not show a significant difference between benign and malignant lesions. Teratomas yielded significantly lower mean ADC values (0.597 × 10-3 mm2/s) compared with all other adnexal lesions (1.812 × 10-3 mm2/s); the mean ADC values in endometrioma (1.387 × 10-3 mm2/s) were significantly lower than in other cystic lesions (2.372 × 10-3 mm2/s).

Conclusion

Inclusion of MRI in the diagnostic algorithm of the indeterminate adnexal mass allows better differentiation of ovarian lesions resulting in a change of therapeutic decision-making with net cost savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurtz AB, Tsimikas JV, Tempany CM et al (1999) Diagnosis and staging of ovarian cancer: comparative values of Doppler and conventional US, CT, and MR imaging correlated with surgery and histopathologic analysis–report of the Radiology Diagnostic Oncology Group. Radiology 212:19–27

    PubMed  CAS  Google Scholar 

  2. Kinkel K, Hricak H, Lu Y, Tsuda K, Filly RA (2000) US characterization of ovarian masses: a meta-analysis. Radiology 217:803–811

    PubMed  CAS  Google Scholar 

  3. Spencer JA, Forstner R, Hricak H (2008) Investigating women with suspected ovarian cancer. Editorial Gynecol Oncol 108:262–264

    Article  Google Scholar 

  4. Lucidarme O, Akakpo JP, Granberg S et al (2010) A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur Radiol 20:1822–1830

    Article  PubMed  Google Scholar 

  5. Outwater EK, Dunton CJ (1995) Imaging of the ovary and adnexa: clinical issues and applications of MR imaging. Radiology 194:1–18

    PubMed  CAS  Google Scholar 

  6. Spencer JA, Forstner R, Cunha TM, Kinkel K, ESUR female imaging sub-committee (2010) ESUR guidelines for MR imaging of the sonographically indeterminate adnexal mass: an algorithmic approach. Eur Radiol 20:25–35

    Article  PubMed  Google Scholar 

  7. Sohaib SA, Mills TD, Sahdev A et al (2005) The role of magnetic resonance imaging and ultrasound in patients with adnexal masses. Clin Radiol 60:340–348

    Article  PubMed  CAS  Google Scholar 

  8. Adusumilli S, Hussain HK, Caoili EM et al (2006) MRI of sonographically indeterminate adnexal masses. AJR Am J Roentgenol 187:732–740

    Article  PubMed  Google Scholar 

  9. Iyer VR, Lee SI (2010) MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol 194:311–321

    Article  PubMed  Google Scholar 

  10. Spencer J, Ghattamaneni S (2010) MR Imaging of the sonographically indeterminate adnexal mass. Radiology 256:677–694

    Article  PubMed  Google Scholar 

  11. Whittaker CS, Coady A, Culver L, Rustin G, Padwick M, Padhani AR (2009) Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. Radiographics 29:759–774

    Article  PubMed  Google Scholar 

  12. Namimoto T, Awai K, Nakaura T, Yanaga Y, Hirai T, Yamashita Y (2009) Role of diffusion-weighted imaging in the diagnosis of gynecological diseases. Eur Radiol 19:745–760

    Article  PubMed  Google Scholar 

  13. Xue HD, Li S, Sun F et al (2008) Clinical application of body diffusion weighted MR imaging in the diagnosis and preoperative N staging of cervical cancer. Chin Med Sci J 23:133–137

    Article  PubMed  Google Scholar 

  14. Sala E, Priest AN, Kataoka M et al (2010) Apparent diffusion coefficient and vascular signal fraction measurements with magnetic resonance imaging: feasibility in metastatic ovarian cancer at 3 Tesla. Technical development Eur Radiol 20:491–496

    Article  Google Scholar 

  15. Moteki T, Ishizaka H (2000) Diffusion-weighted EPI of cystic ovarian lesions: evaluation of cystic contents using apparent diffusion coefficients. J Magn Reson Imaging 12:1014–1019

    Article  PubMed  CAS  Google Scholar 

  16. Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O (2005) Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15:71–78

    Article  PubMed  Google Scholar 

  17. McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA (2008) Diffusion-weighted MRI in cervical cancer. Eur Radiol 18:1058–1064

    Article  PubMed  Google Scholar 

  18. Tamai K, Koyama T, Saga T et al (2007) Diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging 26:682–687

    Article  PubMed  Google Scholar 

  19. Inada Y, Matsuki M, Nakai G et al (2009) Body diffusion-weighted MR imaging of uterine endometrial cancer: is it helpful in the detection of cancer in nonenhanced MR imaging? Eur J Radiol 70:122–127

    Article  PubMed  Google Scholar 

  20. Tamai K, Koyama T, Saga T et al (2008) The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 18:723–730

    Article  PubMed  Google Scholar 

  21. Fujii S, Matsusue E, Kanasaki Y et al (2008) Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 18:18–23

    Article  PubMed  Google Scholar 

  22. Roussel A, Thomassin-Naggara I, Darai E, Marsault C, Bazot M (2009) Value of diffusion-weighted imaging in the evaluation of adnexal tumors. J Radiol 90:589–596

    Article  PubMed  CAS  Google Scholar 

  23. Low RN, Sebrechts CP, Barone RM, Muller W (2009) Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings—a feasibility study. AJR Am J Roentgenol 193:461–470

    Article  PubMed  Google Scholar 

  24. Kawai M, Kano T, Kikkawa F, Maeda O, Oguchi H, Tomoda Y (1992) Transvaginal Doppler ultrasound with color flow imaging in the diagnosis of ovarian cancer. Obstet Gynecol 79:163–167

    PubMed  CAS  Google Scholar 

  25. Froehlich JM, Daenzer M, von Weymarn C, Erturk SM, Zollikofer CL, Patak MA (2009) Aperistaltic effect of hyoscine N-butylbromide versus glucagon on the small bowel assessed by magnetic resonance imaging. Eur Radiol 19:1387–1393

    Article  PubMed  Google Scholar 

  26. Hricak H, Chen M, Coakley FV et al (2000) Complex adnexal masses: detection and characterization with MR imaging—multivariate analysis. Radiology 214:39–46

    PubMed  CAS  Google Scholar 

  27. Outwater E, Schiebler ML, Owen RS, Schnall MD (1993) Characterization of hemorrhagic adnexal lesions with MR imaging: blinded reader study. Radiology 186:489–494

    PubMed  CAS  Google Scholar 

  28. TARMED Suisse Tariff release 1.07.01 in effect since 1.4.2010, positions 39.5110 and 39.5010; accessed on 15 August 2010 www.tarmedsuisse.ch/87html

  29. Booth SJ, Turnbull LW, Poole DR, Richmond I (2008) The accurate staging of ovarian cancer using 3T magnetic resonance imaging—a realistic option. BJOG 115:894–901

    Article  PubMed  CAS  Google Scholar 

  30. Patel MD, Feldstein VA, Chen DC, Lipson SD, Filly RA (1999) Endometriomas: diagnostic performance of US. Radiology 210:739–745

    PubMed  CAS  Google Scholar 

  31. Bazot M, Darai E, Hourani R et al (2004) Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology 232:379–389

    Article  PubMed  Google Scholar 

  32. Zanardi R, Del Frate C, Zuiani C, Bazzocchi M (2003) Staging of pelvic endometriosis based on MRI findings versus laparoscopic classification according to the American Fertility Society. Abdom Imaging 28:733–742

    Article  PubMed  CAS  Google Scholar 

  33. Gougoutas CA, Siegelman ES, Hunt J, Outwater EK (2000) Pelvic endometriosis: various manifestations and MR imaging findings. AJR Am J Roentgenol 175:353–358

    PubMed  CAS  Google Scholar 

  34. Lin G, Ho KC, Wang JJ et al (2008) Detection of lymph node metastasis in cervical and uterine cancers by diffusion weighted magnetic resonance imaging at 3T. J Magn Reson Imaging 28:128–135

    Article  PubMed  Google Scholar 

  35. Lin G, Ng KK, Chang CJ et al (2009) Myometrial invasion in endometrial cancer: diagnostic accuracy of diffusion weighted 3.0-T MR imaging—initial experience. Radiology 250:784–792

    Article  PubMed  Google Scholar 

  36. Park SO, Kim JK, Kim KA et al (2009) Relative apparent diffusion coefficient: determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer. J Magn Reson Imaging 29:383–390

    Article  PubMed  Google Scholar 

  37. Katayama M, Masui T, Kobayashi S et al (2002) Diffusion-weighted echo planar imaging of ovarian tumors: is it useful to measure apparent diffusion coefficients? J Comput Assist Tomogr 26:250–256

    Article  PubMed  Google Scholar 

  38. Nakayama T, Yoshimitsu K, Irie H et al (2005) Diffusion-weighted echo-planar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: usefulness of detecting keratinoid substances in mature cystic teratomas. J Magn Reson Imaging 22:271–278

    Article  PubMed  Google Scholar 

  39. Silvera S, Oppenheim C, Touzé E et al (2005) Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine through and T2-blackout effects. AJNR Am J Neuroradiol 26:236–241

    PubMed  Google Scholar 

  40. Maldjian JA, Listerud J, Moonis G, Siddigi F (2001) Computing diffusion rates in T2-dark hematomas and areas of low T2 signal. AJNR Am J Neuroradiol 22:112–118

    PubMed  CAS  Google Scholar 

  41. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    PubMed  CAS  Google Scholar 

  42. Hricak H, Powell CB, Yu KK et al (1996) Invasive cervical carcinoma: role of MR imaging in pretreatment work-up—cost minimization and diagnostic efficacy analysis. Radiology 198:403–409

    PubMed  CAS  Google Scholar 

  43. Parker RG (1993) The “cost-effectiveness” of radiology and radiologists. Radiology 189:363–369

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Alex Peters for his valuable technical assistance during the study. Moreover, the authors would like to thank Nicole Graf, MSc, for providing statistical support. We are grateful for the assistance from our colleagues of the Department of Gynecology in patient care.

This study was in part supported by a research grant from Guerbet Switzerland. Authors maintained full control of the data and there is no conflict of interest concerning the funding of this study and the addressed subject. Froehlich JM works as a consultant for Grebert. This had no implications for our research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianka Chilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chilla, B., Hauser, N., Singer, G. et al. Indeterminate adnexal masses at ultrasound: effect of MRI imaging findings on diagnostic thinking and therapeutic decisions. Eur Radiol 21, 1301–1310 (2011). https://doi.org/10.1007/s00330-010-2018-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-2018-x

Keywords

Navigation