Skip to main content

Advertisement

Log in

Optimisation of contrast medium volume and injection-related factors in CT pulmonary angiography: 64-slice CT study

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare the image quality of computed tomography pulmonary angiography (CTPA) obtained with the injection of various low doses of contrast medium (CM) with different injection-related factors.

Methods

A total of 90 patients (42 females, 48 males; 54.3 ± 18.6 years) undergoing CTPA were included. Three CM protocols, each containing 30 patients, were created. Protocols 1, 2 and 3 consisted of a CM of 60 ml, 55 ml and 50 ml, and a bolus trigger level of 120 HU, 90 HU and 75 HU, respectively. Injection was uniphasic for protocols 1 and 2 (flow rate 5 ml/s), and biphasic for protocol 3 (flow rates 5 and 4 ml/s); with saline flushing afterwards. Enhancement was measured in three central and six peripheral pulmonary arteries.

Results

The mean attenuation value for pulmonary arteries was over 250 HU for all protocols. There was no difference between the attenuation levels with the protocols (p > 0.05). The percentage of pulmonary arteries exceeding optimal attenuation (≥250 HU) showed that protocols 2 and 3 were 90–100% successful (p < 0.05).

Conclusion

The use of proper injection-related factors during CTPA, such as a low trigger level and a high flow rate with saline injection following a decreased CM volume (55 ml or 50 ml), will enable adequate pulmonary artery contrast enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Raptopoulos V, Boiselle PM (2001) Multi-detector row spiral CT pulmonary angiography: comparison with single-detector row spiral CT. Radiology 221:606–613

    Article  CAS  PubMed  Google Scholar 

  2. Schoepf UJ, Holzknecht N, Helmberger TK et al (2002) Subsegmental pulmonary emboli: improved detection with thin-collimation multi-detector row spiral CT. Radiology 222:483–490

    Article  PubMed  Google Scholar 

  3. Hogg K, Brown G, Dunning J et al (2006) Diagnosis of pulmonary embolism with CT pulmonary angiography: a systematic review. Emerg Med J 23:172–178

    Article  CAS  PubMed  Google Scholar 

  4. Bae KT, Tao C, Gürel S et al (2007) Effect of patient weight and scanning duration on contrast enhancement during pulmonary multidetector CT angiography. Radiology 242:582–589

    Article  PubMed  Google Scholar 

  5. Lee CH, Goo JM, Lee HJ, Kim KG, Im J, Bae KT (2007) Determination of optimal timing window for pulmonary artery MDCT angiography. AJR Am J Roentgenol 188:313–317

    Article  PubMed  Google Scholar 

  6. Schoellnast H, Deutschmann HA, Berghold A, Fritz GA, Schaffer GJ, Tillich M (2006) MDCT angiography of the pulmonary arteries: influence of body weight, body mass index, and scan length on arterial enhancement at different iodine flow rate. AJR Am J Roentgenol 187:1074–1078

    Article  PubMed  Google Scholar 

  7. Yankelevitz DF, Shaham D, Shah A, Rademacker J, Henschke CI (1998) Optimization of contrast delivery for pulmonary CT angiography. Clin Imaging 22:398–403

    Article  CAS  PubMed  Google Scholar 

  8. Washington L, Gulsun M (2003) CT for thromboembolic disease. Curr Probl Diagn Radiol 32:105–126

    Article  PubMed  Google Scholar 

  9. Schoepf UJ, Costello P (2004) CT angiography for diagnosis of pulmonary embolism: state of the art. Radiology 230:329–337

    Article  PubMed  Google Scholar 

  10. Qanadli SD, Hajjam ME, Mesurolle B et al (2000) Pulmonary embolism detection: prospective evaluation of dual-section helical CT versus selective pulmonary arteriography in 157 patients. Radiology 217:447–455

    CAS  PubMed  Google Scholar 

  11. Ghaye B, Szapiro D, Mastora I et al (2001) Peripheral pulmonary arteries: how far in the lung does multi-detector row spiral CT allow analysis? Radiology 219:629–636

    CAS  PubMed  Google Scholar 

  12. Remy-Jardin M, Tillie-Leblond I, Szapiro D et al (2002) CT angiography of pulmonary embolism in patients with underlying respiratory disease: impact of multislice CT on image quality and negative predictive value. Eur Radiol 12:1971–1978

    PubMed  Google Scholar 

  13. Tilie-Leblond I, Mastora I, Radenne F et al (2002) Risk of pulmonary embolism after a negative spiral CT angiogram in patients with pulmonary disease: 1-year clinical follow-up study. Radiology 223:461–467

    Article  Google Scholar 

  14. Kubo S, Tadamura E, Yamamuro M et al (2006) Thoracoabdominal-aortoiliac MDCT angiography using reduced dose of contrast material. AJR Am J Roentgenol 187:548–554

    Google Scholar 

  15. Andreou AK, Curtin JJ, Wilde A, Clark A (2008) Does pregnancy affect vascular enhancement in patients undergoing CT pulmonary angiography? Eur Radiol 18:2716–2722

    Article  PubMed  Google Scholar 

  16. Schaefer-Prokop C, Prokop M (2008) CTPA for the diagnosis of acute pulmonary embolism during pregnancy. Eur Radiol 18:2705–2708

    Article  PubMed  Google Scholar 

  17. U-King-Im JM, Freeman SJ, Boylan T, Cheow HK (2008) Quality of CT pulmonary angiography for suspected pulmonary embolus in pregnancy. Eur Radiol 18:2709–2715

    Article  PubMed  Google Scholar 

  18. Roggenland D, Peters SA, Lemburg SP, Holland-Letz T, Nicolas V, Heyer CM (2008) CT angiography in suspected pulmonary embolism: impact of patient characteristics and different venous lines on vessel enhancement and image quality. AJR Am J Roentgenol 190:W351–W359

    Article  PubMed  Google Scholar 

  19. Arakawa H, Kohno T, Hiki T, Kaji Y (2007) CT pulmonary angiography and CT venography: factors associated with vessel enhancement. AJR Am J Roentgenol 189:156–161

    Article  PubMed  Google Scholar 

  20. Hartmann IJ, Lo RT, Bakker J, de Monye W, van Waes PF, Pattynama PM (2002) Optimal scan delay in spiral CT for the diagnosis of acute pulmonary embolism. J Comput Assist Tomogr 26:21–25

    Article  PubMed  Google Scholar 

  21. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part 1. Prediction with a computer model. Radiology 207:647–655

    CAS  PubMed  Google Scholar 

  22. Eyer BA, Goodman LR, Washington L (2005) Clinicians’ response to radiologists’ reports of isolated subsegmental pulmonary embolism or inconclusive interpretation of pulmonary embolism using MDCT. AJR Am J Roentgenol 184:623–628

    PubMed  Google Scholar 

  23. Revel MP, Petrover D, Hernigou A, Lefort C, Meyer G, Frija G (2005) Diagnosis pulmonary embolism with four-detector row helical CT: prospective evaluation of 216 outpatients and inpatients. Radiology 234:265–273

    Article  PubMed  Google Scholar 

  24. Schoep UJ, Holzknechnt N, Helmberger TK et al (2002) Subsegmental pulmonary emboli: improved detection with thin-collimation multi-detector row spiral CT. Radiology 222:483–490

    Article  Google Scholar 

  25. Kim T, Murakami T, Takahashi S et al (1998) Effects of injection rates of contrast material on arterial phase hepatic CT. AJR Am J Roentgenol 171:429–432

    CAS  PubMed  Google Scholar 

  26. Fleischmann D, Rubin GD, Bankier AA, Hittmair K (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214:363–371

    CAS  PubMed  Google Scholar 

  27. Bae KT, Tran HQ, Heiken JP (2000) Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology 216:872–880

    CAS  PubMed  Google Scholar 

  28. Remy-Jardin M, Mastora I, Remy J (2003) Pulmonary embolus imaging with multislice CT. Radiol Clin North Am 41:507–519

    Article  PubMed  Google Scholar 

  29. Cademartiri F, Nieman K, van der Lugt A et al (2004) Intravenous contrast material administration at 16–detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233:817–823

    Article  PubMed  Google Scholar 

  30. Haage P, Schmitz-Rode T, Hubner D, Piroth W, Gunther RW (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174:1049–1053

    CAS  PubMed  Google Scholar 

  31. Hopper KD, Mosher TJ, Kasales CJ, TenHave TR, Tully DA, Weaver JS (1997) Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 205:269–271

    CAS  PubMed  Google Scholar 

  32. Schoellnast H, Tillich M, Deutschmann MJ, Deutschmann HA, Schaffler GJ, Portugaller HR (2004) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39:20–26

    Article  PubMed  Google Scholar 

  33. Schoellnast H, Deutschmann HA, Fritz GA, Stessel U, Schaffler GJ, Tillich M (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was presented as a scientific exhibit at ECR 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Uysal Ramadan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uysal Ramadan, S., Kosar, P., Sonmez, I. et al. Optimisation of contrast medium volume and injection-related factors in CT pulmonary angiography: 64-slice CT study. Eur Radiol 20, 2100–2107 (2010). https://doi.org/10.1007/s00330-010-1782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1782-y

Keywords

Navigation