Skip to main content
Log in

High resolution MR imaging of the fetal heart with cardiac triggering: a feasibility study in the sheep fetus

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to perform fetal cardiac magnetic resonance imaging (MRI) with triggering of the fetal heart beat in utero in a sheep model. All experimental protocols were reviewed and the usage of ewes and fetuses was approved by the local animal protection authorities. Images of the hearts of six pregnant ewes were obtained by using a 1.5-T MR system (Philips Medical Systems, Best, Netherlands). The fetuses were chronically instrumented with a carotid catheter to measure the fetal heart frequency for the cardiac triggering. Pulse wave triggered, breath-hold cine-MRI with steady-state free precession (SSFP) was achieved in short axis, two-, four- and three-chamber views. The left ventricular volume and thus the function were measured from the short axis. The fetal heart frequencies ranged between 130 and 160 bpm. The mitral, tricuspid, aortic, and pulmonary valves could be clearly observed. The foramen ovale could be visualized. Myocardial contraction was shown in cine sequences. The average blood volume at the end systole was 3.4 ± 0.2 ml (± SD). The average volume at end diastole was 5.2 ± 0.2 ml; thus the stroke volumes of the left ventricle in the systole were between 1.7 and 1.9 ml with ejection fractions of 38.6% and 39%,   respectively. The pulse wave triggered cardiac MRI of the fetal heart allowed evaluation of anatomical structures and functional information. This feasibility study demonstrates the applicability of MRI for future evaluation of fetuses with complex congenital heart defects, once a noninvasive method has been developed to perform fetal cardiac triggering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blondin D, Schaper J, Klee D, Reihs T, Hammer R, Modder U, Messing-Junger M (2008) Evaluation of malformations of the fetal central nervous system using fetal MRI. Rofo 180:715–721

    PubMed  CAS  Google Scholar 

  2. Busing KA, Kilian AK, Schaible T, Endler C, Schaffelder R, Neff KW (2008) MR relative fetal lung volume in congenital diaphragmatic hernia: survival and need for extracorporeal membrane oxygenation. Radiology 248:240–246

    Article  PubMed  Google Scholar 

  3. Perkins L, Hughes E, Srinivasan L, Allsop J, Glover A, Kumar S, Fisk N, Rutherford M (2008) Exploring cortical subplate evolution using magnetic resonance imaging of the fetal brain. Dev Neurosci. 30:211–220

    Article  PubMed  CAS  Google Scholar 

  4. Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159

    Article  PubMed  Google Scholar 

  5. Righini A, Avagliano L, Doneda C, Pinelli L, Parazzini C, Rustico M, Triulzi F, Bulfamante G (2008) Prenatal magnetic resonance imaging of optic nerve head coloboma. Prenat Diagn 28(3):242–246

    Article  PubMed  Google Scholar 

  6. Kappeler C, Dhenain M, Phan Dinh Tuy F, Saillour Y, Marty S, Fallet-Bianco C, Souville I, Souil E, Pinard JM, Meyer G, Encha-Razavi F, Volk A, Beldjord C, Chelly J, Francis F (2007) Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to doublecortin deficiency. J Comp Neurol 500:239–254

    Article  PubMed  CAS  Google Scholar 

  7. Ramenghi LA, Fumagalli M, Righini A, Bassi L, Groppo M, Parazzini C, Bianchini E, Triulzi F, Mosca F (2007) Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49:161–167

    Article  PubMed  Google Scholar 

  8. Wedegartner U, Tchirikov M, Schafer S, Priest AN, Walther M, Adam G, Schroder HJ (2005) Fetal sheep brains: findings at functional blood oxygen level-dependent 3-T MR imaging—relationship to maternal oxygen saturation during hypoxia. Radiology 237:919–926

    Article  PubMed  Google Scholar 

  9. Wedegartner U, Tchirikov M, Schafer S, Priest AN, Kooijman H, Adam G, Schroder HJ (2006) Functional MR imaging: comparison of BOLD signal intensity changes in fetal organs with fetal and maternal oxyhemoglobin saturation during hypoxia in sheep. Radiology 238:872–880

    Article  PubMed  Google Scholar 

  10. Wedegartner U, Tchirikov M, Koch M, Adam G, Schroder H (2002) Functional magnetic resonance imaging (fMRI) for fetal oxygenation during maternal hypoxia: initial results. Rofo 174:700–703

    PubMed  CAS  Google Scholar 

  11. Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M (2007) Coronary MR angiography at 3 T during diastole and systole. J Magn Reson Imaging 26:921–926

    Article  PubMed  Google Scholar 

  12. Gharib AM, Ho VB, Rosing DR, Herzka DA, Stuber M, Arai AE, Pettigrew RI (2008) Coronary artery anomalies and variants: technical feasibility of assessment with coronary MR angiography at 3 T. Radiology 247:220–227

    PubMed  Google Scholar 

  13. Finn JP, Nael K, Deshpande V, Ratib O, Laub G (2006) Cardiac MR imaging: state of the technology. Radiology 241:338–354

    Article  PubMed  Google Scholar 

  14. Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH, Abbara S, Bamberg F, Ferencik M, Schmidt EJ, Brown DF, Hoffmann U, Brady TJ (2008) Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118(8):837–844

    Article  PubMed  Google Scholar 

  15. Ebeling Barbier C, Bjerner T, Hansen T, Andersson J, Lind L, Hulthe J, Johansson L, Ahlstrom H (2007) Clinically unrecognized myocardial infarction detected at MR imaging may not be associated with atherosclerosis. Radiology 245:103–110

    Article  PubMed  Google Scholar 

  16. Manganaro L, Savelli S, Di Maurizio M, Perrone A, Francioso A, La Barbera L, Totaro P, Fierro F, Tomei A, Coratella F, Giancotti A, Ballesio L,Ventriglia F (2008) Assessment of congenital heart disease (CHD): is there a role for fetal magnetic resonance imaging (MRI)? Eur J Radiol. doi:10.1016/j.ejrad.2008.06.016

  17. Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI: a developing technique for the developing patient. AJR Am J Roentgenol 182:243–252

    PubMed  Google Scholar 

  18. Coakley FV, Hricak H, Filly RA, Barkovich AJ, Harrison MR (1999) Complex fetal disorders: effect of MR imaging on management—preliminary clinical experience. Radiology 213:691–696

    PubMed  CAS  Google Scholar 

  19. Huisman TA, Wisser J, Martin E, Kubik-Huch R, Marincek B (2002) Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 12:1952–1961

    PubMed  Google Scholar 

  20. Guo WY, Wong TT (2003) Screening of fetal CNS anomalies by MR imaging. Childs Nerv Syst 19:410–414

    Article  PubMed  Google Scholar 

  21. Guo Y, Luo BN (2006) The state of the art of fetal magnetic resonance imaging. Chin Med J (Engl) 119:1294–1299

    Google Scholar 

  22. Stoll C, Benoit F, Peter MO, Gasser B (1999) Familial association of camptodactyly, mental retardation, whistling face and Pierre Robin sequence. Clin Dysmorphol 8:247–251

    Article  PubMed  CAS  Google Scholar 

  23. Allen LM, Silverman RK (2000) Prenatal ultrasound evaluation of fetal diastematomyelia: two cases of type I split cord malformation. Ultrasound Obstet Gynecol 15:78–82

    Article  PubMed  CAS  Google Scholar 

  24. Deng J, Brookes JA, Gardener JE, Rodeck CH, Lees WR (1996) Three-dimensional magnetic resonance imaging of the postmortem fetal heart. Fetal Diagn Ther 11:417–421

    Article  PubMed  CAS  Google Scholar 

  25. Deng J, Rodeck CH (2004) New fetal cardiac imaging techniques. Prenat Diagn 24:1092–1103

    Article  PubMed  Google Scholar 

  26. Meyer-Wittkopf M, Cook A, McLennan A, Summers P, Sharland GK, Maxwell DJ (1996) Evaluation of three-dimensional ultrasonography and magnetic resonance imaging in assessment of congenital heart anomalies in fetal cardiac specimens. Ultrasound Obstet Gynecol 8:303–308

    Article  PubMed  CAS  Google Scholar 

  27. Wang XF, Deng YB, Nanda NC, Deng J, Miller AP, Xie MX (2003) Live three-dimensional echocardiography: imaging principles and clinical application. Echocardiography 20:593–604

    Article  PubMed  Google Scholar 

  28. Chang CH, Yu CH, Chang FM, Ko HC, Chen HY (2003) Volumetric assessment of normal fetal lungs using three-dimensional ultrasound. Ultrasound Med Biol 29:935–942

    Article  PubMed  Google Scholar 

  29. Chang CH, Yu CH, Chang FM, Ko HC, Chen HY (2003) Three-dimensional ultrasound in the assessment of normal fetal thigh volume. Ultrasound Med Biol 29:361–366

    Article  PubMed  Google Scholar 

  30. Meyer-Wittkopf M (2002) Interventional fetal cardiac therapy—possible perspectives and current shortcomings. Ultrasound Obstet Gynecol 20:527–531

    Article  PubMed  CAS  Google Scholar 

  31. Deng J, Rodeck CH (2006) Current applications of fetal cardiac imaging technology. Curr Opin Obstet Gynecol 18:177–184

    Article  PubMed  Google Scholar 

  32. Manganaro L, Savelli S, Di Maurizio M, Perrone A, Tesei J, Francioso A, Angeletti M, Coratella F, Irimia D, Fierro F, Ventriglia F, Ballesio L (2008) Potential role of fetal cardiac evaluation with magnetic resonance imaging: preliminary experience. Prenat Diagn 28:148–156

    Article  PubMed  Google Scholar 

  33. Fogel MA, Wilson RD, Flake A, Johnson M, Cohen D, McNeal G, Tian ZY, Rychik J (2005) Preliminary investigations into a new method of functional assessment of the fetal heart using a novel application of ‘real-time’ cardiac magnetic resonance imaging. Fetal Diagn Ther 20:475–480

    Article  PubMed  Google Scholar 

  34. Smith FW, MacLennan F, Abramovich DR, MacGilivray I, Hutchison JM (1984) NMR imaging in human pregnancy: a preliminary study. Magn Reson Imaging 2:57–64

    Article  PubMed  CAS  Google Scholar 

  35. Smith FW, Adam AH, Phillips WD (1983) NMR imaging in pregnancy. Lancet 1:61–62

    Article  PubMed  CAS  Google Scholar 

  36. Hiba B, Richard N, Thibault H, Janier M (2007) Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7 T. Magn Reson Med 58:745–753

    Article  PubMed  Google Scholar 

  37. Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, Simonetti OP (2004) Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med 52:782–788

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yamamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamura, J., Schnackenburg, B., Kooijmann, H. et al. High resolution MR imaging of the fetal heart with cardiac triggering: a feasibility study in the sheep fetus. Eur Radiol 19, 2383–2390 (2009). https://doi.org/10.1007/s00330-009-1420-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1420-8

Keywords

Navigation