Skip to main content
Log in

Quantitative ultrasound in the assessment of skeletal status

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Quantitative ultrasound (QUS) is a non-invasive technique for the investigation of bone tissue in several pathologies and clinical conditions, especially in the field of osteoporosis. The versatility of the technique, its low cost and lack of ionising radiation have led to the diffusion of this method worldwide. Several studies have been conducted in the last years to investigate the potential of QUS in multiple areas with promising results; the technique has been applied in the prediction of osteoporotic fractures, in monitoring therapies, in the investigation of secondary osteoporosis, in paediatrics, neonatology and genetics. Our review article gives an overview of the most relevant developments in the field of quantitative ultrasound, both in clinical and in experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Seeman E (2008) Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 26:1–8

    Article  PubMed  Google Scholar 

  2. Parfitt AM (1998) A structural approach to renal bone disease. J Bone Miner Res 13:1213–1220

    Article  PubMed  CAS  Google Scholar 

  3. Nguyen TV, Blangero J, Eisman JA (2000) Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res 15:392–401

    Article  PubMed  CAS  Google Scholar 

  4. Baroncelli GI, Federico G, Vignolo M et al (2006) Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  5. Baroncelli GI, Federico G, Bertelloni S et al (2003) Assessment of bone quality by quantitative ultrasound of proximal phalangeas of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136

    Article  PubMed  Google Scholar 

  6. Baroncelli GI (2008) Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res 63:220–228

    Article  PubMed  Google Scholar 

  7. McDevitt H, Ahmed SF (2007) Quantitative Ultrasound Assessment of Bone Health in the Neonate. Neonatology 91:2–11

    Article  PubMed  CAS  Google Scholar 

  8. Ferretti JL, Frost HM, Gasser JA et al (1995) Perspectives: on osteoporosis research: its focus and some insight of a new paradigm. Calcif Tissue Int 57:399–404

    Article  PubMed  CAS  Google Scholar 

  9. Mazess RB (1990) Fracture risk: a role for compact bone. Calcif Tissue Int 47:191–193

    Article  PubMed  CAS  Google Scholar 

  10. Barkmann R, Kantorovich E, Singal C et al (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom 3:1–7

    Article  PubMed  CAS  Google Scholar 

  11. Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (1999) Quantitative ultrasound. Assessment of osteoporosis and bone status. Martin Dunitz Ltd ed., London UK

    Google Scholar 

  12. Lum CK, Wang MC, Moore E et al (1999) A comparison of calcaneus ultrasound and dual X-ray absorptiometry in healthy North American youths and young adults. J Clin Densitom 2:403–41

    Article  PubMed  CAS  Google Scholar 

  13. Cadossi R, Canè V (1996) Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study. Osteoporos Int 6:196–206

    Article  PubMed  CAS  Google Scholar 

  14. Wuster C, Albanese C, De Aloysio D et al (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15:1603–1614

    Article  PubMed  CAS  Google Scholar 

  15. Adami S, Giannini S, Giorgino R et al (2003) The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: the ESOPO study. Osteoporos Int 14:198–207

    PubMed  Google Scholar 

  16. Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  PubMed  CAS  Google Scholar 

  17. Bauer DC, Gluer CC, Cauley JA et al (1997) Broadband ultrasound attenuation predict fractures strongly and independently of densitometry in older women. A prospective study. Arch Intern Med 157:629–634

    Article  PubMed  CAS  Google Scholar 

  18. Krieg MA, Cornuz J, Ruffieux C et al (2006) Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or = 70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study. J Bone Miner Res 21:1457–1463

    Article  PubMed  Google Scholar 

  19. Khaw KT, Reeve J, Luben R et al (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202

    Article  PubMed  Google Scholar 

  20. Guglielmi G, Cammisa M, De Serio A et al (1999) Phalangeal US velocity discriminates between normal and vertebrally fractured subjects. Eur Radiol 9:1632–1637

    Article  PubMed  CAS  Google Scholar 

  21. Guglielmi G, Njeh CF, de Terlizzi F et al (2003) Palangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72:469–77

    Article  PubMed  CAS  Google Scholar 

  22. Hartl F, Tyndall A, Kraenzlin M et al (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: result of the Basel Osteoporosis Study. J Bone Miner Res 17:321–330

    Article  PubMed  CAS  Google Scholar 

  23. Krieg MA, Cornuz J, Ruffieux C et al (2003) Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7562 elderly women. J Bone Miner Res 18:1261–1266

    Article  PubMed  CAS  Google Scholar 

  24. Camozzi V, De Terlizzi F, Zangari M, Luisetto G (2007) Quantitative bone ultrasound at phalanges and calcaneus in osteoporotic postmenopausal women: influence of age and measurement site. Ultrasound Med Biol 33:1039–1045

    Article  PubMed  Google Scholar 

  25. Pluskiewicz W (2007) Quantitative ultrasound and hip fractures? J Bone Miner Res 22:1311

    Article  PubMed  Google Scholar 

  26. Krieg MA, Hans D (2007) author reply. J Bone Miner Res 22:1312

    Article  Google Scholar 

  27. Gluer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS study. J Bone Miner Res 19:782–793

    Article  PubMed  Google Scholar 

  28. Krieg MA, Hans D, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD official positions. J Clin Densitom 11:163–187

    Article  PubMed  Google Scholar 

  29. Hans D, Krieg M-A (2008) The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1529–1538

    Article  PubMed  CAS  Google Scholar 

  30. Tauchmanova L, Rossi R, Nuzzo V et al (2001) Bone loss determined by quantitative ultrasonometry correlates inversely with disease activity in patients with endogenous glucocorticoid excess due to adrenal mass. Eur J Endocrinol 145:241–247

    Article  PubMed  CAS  Google Scholar 

  31. Roben P, Barkmann R, Ullrich S, Gause A, Heller M, Glüer C-C (2001) Assessment of phalangeal bone loss and erosions in patients with rheumatoid arthritis by quantitative ultrasound. Ann Rheum Dis 60:670–677

    Article  PubMed  CAS  Google Scholar 

  32. Birkett V, Ring EFJ, Elvins DM, Taylor G, Bhalla AK (2003) A comparison of bone loss in early and late rheumatoid arthritis using quantitative phalangeal ultrasound. Clin Rheumatol 22:203–207

    Article  PubMed  CAS  Google Scholar 

  33. Luisetto G, Camozzi V, de Terlizzi F (2000) Use of quantitative ultrasonography in differentiating osteomalacia from osteoporosis: preliminary study. J Ultrasound Med 19:251–256

    PubMed  CAS  Google Scholar 

  34. Filosa A, de Terlizzi F (2002) Quantitative ultrasound (QUS): a new approach to evacuate bone status in thalassemic patients. Ital J Pediatr 28:310–318

    Google Scholar 

  35. Cepollaro C, Gonnelli S, Pondrelli C et al (1999) Osteogenesis Imperfecta: bone turnover, bone density, and ultrasound parameters. Calcif Tissue Int 65:129–132

    Article  PubMed  CAS  Google Scholar 

  36. Gonnelli S, Montagnani A, Cepollaro C et al (2000) Quantitative ultrasound and bone mineral density in patients with primary hyperparathyroidism before and after surgical treatment. Osteoporos Int 11:255–260

    Article  PubMed  CAS  Google Scholar 

  37. Taccari E, Sensi F, Spadaro A, Riccieri V, Rinaldi T (2001) Ultrasound measurements at the proximal phalanges in male patients with psoriatic arthritis. Osteoporos Int 12:412–416

    Article  PubMed  CAS  Google Scholar 

  38. Pluskiewicz W, Nowakowska J (1997) Bone status after long-term anticonvulsant therapy in epileptic patients: evaluation using quantitative ultrasound of calcaneus and phalanxes. Ultrasound Med Biol 23:553–558

    Article  PubMed  CAS  Google Scholar 

  39. Rossini M, Viapiana O, Del Marco A, de Terlizzi F, Gatti D, Adami S (2007) Quantitative ultrasound in adults with cystic fibrosis: correlation with bone mineral density and risk of vertebral fractures. Calcif Tissue Int 80:44–49

    Article  PubMed  CAS  Google Scholar 

  40. Montagnani A, Gonnelli S, Cepollaro C (1999) Quantitative Ultrasound in the Assessment of Skeletal Status in Uremic Patients. J Clin Densitom 2:389–395

    Article  PubMed  CAS  Google Scholar 

  41. Rico H, Aguado F, Revilla M et al (1999) Ultrasound bone velocity and metacarpal radiogrammetry in hemodialyzed patients. Miner Electrolyte Metab 20:103–106

    Google Scholar 

  42. Przedlacki J, Pluskiewicz W, Wieliczko M et al (1999) Quantitative Ultrasound of phalanges and Dual-Energy X-ray Absorptiometry of forearm and hand in patients with end-stage renal failure treated with dialysis. Osteoporos Int 10:1–6

    Article  PubMed  CAS  Google Scholar 

  43. Pluskiewicz W, Adamczyk P, Drozdzowska B et al (2002) Skeletal status in children, adolescents and young adults with end-stage renal failure treated with hemo- or peritoneal dialysis. Osteoporos Int 13:353–357

    Article  PubMed  CAS  Google Scholar 

  44. Pluskiewicz W, Adamczyk P, Drozdzowska B (2003) Skeletal status in children and adolescents with chronic renal failure before onset of dialysis or on dialysis. Osteoporos Int 14:283–288

    Article  PubMed  CAS  Google Scholar 

  45. Pluskiewicz W, Zwiec J, Gumprecht J, Grzeszczak W (2007) Quantitative ultrasound of phalanges of adults with end-stage renal disease or who have undergone renal transplantation. Ultrasound Med Biol 33:1353–61

    Article  PubMed  CAS  Google Scholar 

  46. Taal MW, Cassidy MJD, Pearson D, Green D, Masud T (1999) Usefulness of quantitative heel ultrasound compared with dual-energy X-ray absorptiometry in determining bone mineral density in chronic haemodialysis patients. Nephrol Dial Transplant 14:1917–1921

    Article  PubMed  CAS  Google Scholar 

  47. Peretz A, Penaloza A, Mesquita M et al (2000) Quantitative ultrasound and dual X-ray absorptiometry measurements of the calcaneus in patients on maintenance hemodialysis. Bone 27:287–292

    Article  PubMed  CAS  Google Scholar 

  48. Arici M, Ertuk H, Altun B (2000) Bone mineral density in haemodialysis patients: a comparative study of dual-energy X-ray absorptiometry and quantitative ultrasound. Nephrol Dial Transplant 15:1847–1851

    Article  PubMed  CAS  Google Scholar 

  49. Pluskiewicz W, Przedlacki J, Drozdzowska B, Wlodarczyk D, Matuszkiewicz-Rowinska J, Adamczyk P (2004) Quantitative ultrasound at hand phalanges in adults with end-stage renal failure. Ultrasound Med Biol 2004 30:455–459

    Article  CAS  Google Scholar 

  50. Guglielmi G, de Terlizzi F, Aucella F, Scillitani A (2006) Quantitative ultrasound technique at the phalanges in discriminating between uremic and osteoporotic patients. Eur J Radiol 60:108–114

    Article  PubMed  CAS  Google Scholar 

  51. Foldes AJ, Arnon E, Propovtzer MM (1996) Reduced speed of sound in tibial bone of hemodialysed patients: association with serum PTH level. Nephrol Dial Transplant 11:1318–1321

    PubMed  CAS  Google Scholar 

  52. Guglielmi G, de Terlizzi F, Aucella F (2004) Quantitative ultrasound: clinical applications. G Ital Nefrol 21:343–354

    PubMed  CAS  Google Scholar 

  53. Mauloni M, Rovati LC, Cadossi R, de Terlizzi F, Ventura V, de Aloysio D (2000) Monitoring bone effect of transdermal hormone replacement therapy by ultrasound investigation at the phalanx. A Four Year Follow up Study. Menopause 7:402–412

    CAS  Google Scholar 

  54. Glüer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res. 14:1952–62

    Article  PubMed  Google Scholar 

  55. Ingle BM, Machado AB, Pereda CA, Eastell R (2005) Monitoring alendronate and oestradiol therapy with quantitative ultrasound and bone mineral density. J Clin Densitom 8:278–286

    Article  PubMed  Google Scholar 

  56. Gonnelli S, Cepollaro C, Montagnani A et al (2002) Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study. Osteoporos Int 13:415–21

    Article  PubMed  CAS  Google Scholar 

  57. Agostinelli D, de Terlizzi F (2007) QUS in monitoring raloxifene and estrogen-progestogens: a 4-year longitudinal study. Ultrasound Med Biol 33:1184–1190

    Article  PubMed  CAS  Google Scholar 

  58. Lange U, Illgner U, Teichmann J, Schleenbecker H et al (2004) Skeletal benefit after one year of risedronate therapy in patients with rheumatoid arthritis and glucocorticoid-induced osteoporosis: a prospective study. Int J Clin Pharmacol Res 24:33–38

    PubMed  CAS  Google Scholar 

  59. Gonnelli S, Cepollaro C, Pondrelli C (1996) Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study. Osteoporos Int 6:303–207

    Article  PubMed  CAS  Google Scholar 

  60. Frost ML, Blake GM, Fogelman I (2001) Changes in QUS and BMD measurements with antiresorptive therapy: a two-year longitudinal study. Calcif Tissue Int 69:138–46

    Article  PubMed  CAS  Google Scholar 

  61. Gonnelli S, Martini G, Caffarelli C et al (2006) Teriparatide’s effects on quantitative ultrasound parameters and bone density in women with established osteoporosis. Osteoporos Int 17:1524–1531

    Article  PubMed  CAS  Google Scholar 

  62. World Health Organization (WHO) 1994 Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical Report. Series 843, WHO Geneve.

  63. WHO SCIENTIFIC GROUP ON THE ASSESSMENT OF OSTEOPOROSIS AT PRIMARY HEALTH CARE LEVEL. Summary Meeting Report Brussels, Belgium, 5–7 May 2004

  64. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  65. Kanis JA, Johnell O, Oden A et al (2005) Ten-year probabilities of clinical vertebral fractures according to phalangeal quantitative ultrasonography. Osteoporos Int 16:1065–1070

    Article  PubMed  CAS  Google Scholar 

  66. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ (2000) Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 11:967–976

    Article  PubMed  Google Scholar 

  67. Sawyer A, Moore S, Fielding KT, Nix DA, Kiratli J, Bachrach LK (2001) Calcaneus ultrasound measurements in a convenience sample of healthy youth. J Clin Densitom 4:111–120

    Article  PubMed  CAS  Google Scholar 

  68. Barkmann R, Rohrschneider W, Vierling M et al (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13:55–61

    Article  PubMed  CAS  Google Scholar 

  69. Halaba ZP, Pluskiewicz W (2004) Quantitative ultrasound in the assessment of skeletal status in children and adolescents. Ultrasound Med Biol 30:239–243

    Article  PubMed  Google Scholar 

  70. Zadik Z, Price D, Diamond G (2003) Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int 14:857–862

    Article  PubMed  Google Scholar 

  71. Lequin MH, van Rijn RR, Robben SG, Hop WC, van Kuijk C (2000) Normal values for tibial quantitative ultrasonometry in caucasian children and adolescents (aged 6 to 19 years). Calcif Tissue Int 67:101–105

    Article  PubMed  CAS  Google Scholar 

  72. Zadik Z, Price D, Diamond G (2003) Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int 14:857–862

    Article  PubMed  Google Scholar 

  73. Lewiecki EM, Watts NB, McClung MR et al (2004) Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab 89:3651–3655

    Article  PubMed  CAS  Google Scholar 

  74. Schalamon J, Singer G, Schwantzer G, Nietosvaara Y (2004) Quantitative ultrasound assessment in children with fractures. J Bone Miner Res 19:1276–1279

    Article  PubMed  Google Scholar 

  75. Halaba ZP, Konstantynowicz J, Pluskiewicz W, Kaczmarski M, Piotrowska-Jastrzebska J (2005) Comparison of phalangeal ultrasound and dual energy X-ray absorptiometry in healthy male and female adolescents. Ultrasound Med Biol 31:1617–1622

    Article  PubMed  Google Scholar 

  76. Fielding KT, Nix DA, Bachrach LK (2003) Comparison of calcaneus ultrasound and dual X-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 6:7–15

    Article  PubMed  Google Scholar 

  77. Hartman C, Brik R, Tamir A, Merrick J, Shamir R (2004) Bone quantitative ultrasound and nutritional status in severely handicapped institutionalized children and adolescents. Clin Nutr 23:89–98

    Article  PubMed  CAS  Google Scholar 

  78. Meadow W, Lee G, Lin K, Lantos J (2004) Changes in mortality for extremely low birth weight infants in the 1990s: implications for treatment decisions and resource use. Pediatrics 113:1223–1229

    Article  PubMed  Google Scholar 

  79. Rubinacci A, Moro GE, Noehm G et al (2003) Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur J Endocrinol 149:307–315

    Article  PubMed  CAS  Google Scholar 

  80. Ritschl E, Wehmeijer K, De Terlizzi F et al (2005) Assessment of skeletal development in preterm and term infants by quantitative ultrasound. Pediatr Res 58:341–346

    Article  PubMed  Google Scholar 

  81. Tomlinson C, McDevitt H, White MP, Ahmed SF (2006) Longitudinal changes in bone health as assessed by the speed of sound in very low birth weight preterm infants. J Pediatr 148:450–455

    Article  PubMed  CAS  Google Scholar 

  82. Littner Y, Mandel D, Mimouni FB, Dollberg S (2003) Bone ultrasound velocity curves of newly born term and preterm infants. J Pediatr Endocrinol 16:43–7

    Google Scholar 

  83. Nemet D, Dolfin T, Wolach B, Eliakim A (2001) Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr 160:736–740

    PubMed  CAS  Google Scholar 

  84. Eliakim A, Nemet D, Friedland O, Dolfin T, Regev R (2002) Spontaneous activity in premature infants affects bone strength. J Perinatol 22:650–652

    Article  PubMed  Google Scholar 

  85. Litmanovitz I, Dolfin T, Friedland O (2003) A: Early physical activity prevents decrease of bone strength in very low birth weight infants. Pediatrics 112:15–19

    Article  PubMed  Google Scholar 

  86. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults: a twin study. J Clin Invest 80:706–710

    Article  PubMed  CAS  Google Scholar 

  87. Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G (1987) Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone 8:207–209

    Article  PubMed  CAS  Google Scholar 

  88. Arden NK, Baker J, Hogg C, Baan K, Spector TD (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11:530–534

    Article  PubMed  CAS  Google Scholar 

  89. Howard G, Nguien TV, Harris M, Kelly PJ, Eisman JA (1998) Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res 13:1318–1327

    Article  PubMed  CAS  Google Scholar 

  90. Guglielmi G, de Terlizzi F, Torrente I, Mingarelli R, Dallapiccola B (2005) Quantitative ultrasound of the hand phalanges in a cohort of monozygotic twins: influence of genetic and environmental factors. Skeletal Radiol 34:727–735

    Article  PubMed  CAS  Google Scholar 

  91. Gluer C-C (2008) A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1524–1528

    Article  PubMed  CAS  Google Scholar 

  92. Laugier P (2008) Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason Ferroelectr Freq Control 55(6):1179–1196

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Francesca De Terlizzi, MSc., Scientific Department IGEA S.p.A., Italy, for her assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Guglielmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglielmi, G., Adams, J. & Link, T.M. Quantitative ultrasound in the assessment of skeletal status. Eur Radiol 19, 1837–1848 (2009). https://doi.org/10.1007/s00330-009-1354-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1354-1

Keywords

Navigation