Skip to main content
Log in

A method for calcium quantification by means of CT coronary angiography using 64-multidetector CT: very high correlation with agatston and volume scores

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To find out whether calcium scoring of the coronary arteries (CAC scoring) could be carried out with a CT angiography of the coronary arteries (CTCA) in a single CT data acquisition. The Agatston and V130 scores for 113 patients were assessed. A calcium volume score (V600 score) was compiled from the CTCA data sets. Intra- and interobserver correlations were excellent (ρ > 0.97). The intra- and interobserver repeatability coefficients were extremely low, increasing in magnitude from the V600 score to the V130 and Agatston scores. The V600 score underestimates the coronary calcium burden. However, it has a linear relation to the Agatston and V130 scores. Thus, they are predictable from the values of the V600 score. The V600 score shows a linear relation to the classic CAC scores. Due to its extremely high reliability, the score may be a feasible alternative for classic CAC scoring methods in order to reduce radiation dosages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World health organization (2004) In: The world health report 2004. Annex Table 2: Death by cause, sex and mortality stratum in WHO regions, estimates for 2002. Available via DIALOG. http://www.who.int/whr/2004/en/report04_en.pdf Accessed 24th April 2008

  2. American Heart Association (2008) In: Heart Disease and Stroke statistics. A Guide to Current Statistics And The Supplement to Our Heart and Stroke Facts. 2008 Update At-A-Glance. Available via DIALOG. http://www.americanheart.org/downloadable/heart/1200078608862HS_Stats%202008.final.pdf Accessed 24th April 2008

  3. Thompson GR, Partridge J (2004) Coronary calcification score: the coronary-risk impact factor. Lancet 363:557–559

    Article  PubMed  CAS  Google Scholar 

  4. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  5. Rumberger JA, Brundage BH, Rader DJ et al (1999) Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 74:243–252

    Article  PubMed  CAS  Google Scholar 

  6. Becker CR, Kleffel T, Crispin A et al (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 176:1295–1298

    CAS  Google Scholar 

  7. Funabashi N, Koide K, Mizuno N et al (2006) Influence of heart rate on the detectability and reproducibility of multislice computed tomography for measuring coronary calcium score using a pulsating calcified mock-vessel in comparison with electron beam tomography. Int J Cardiol 113:113–117

    Article  PubMed  Google Scholar 

  8. Horiguchi J, Shen Y, Akiyama Y et al (2005) Electron beam CT versus 16-MDCT on the variability of repeated coronary artery calcium measurements in a variable heart rate phantom. Am J Roentgenol 185:995–1000

    Article  Google Scholar 

  9. Schlosser T, Hunold P, Voigtländer T et al (2007) Coronary artery calcium scoring: influence of reconstruction interval and reconstruction increment using 64-MDCT. Am J Roentgenol 188:1063–1068

    Article  Google Scholar 

  10. van Ooijen PM, Vliegenthart R, Witteman JC et al (2005) Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15:102–110

    Article  PubMed  Google Scholar 

  11. Hunold P, Vogt FM, Schmermund A (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152

    Article  PubMed  Google Scholar 

  12. Lau GT, Ridley LJ, Schieb MC et al (2005) Coronary artery stenoses: detection with calcium scoring, CT angiography, and both methods combined. Radiology 235:415–422

    Article  PubMed  Google Scholar 

  13. Hong C, Becker CR, Schoepf UJ et al (2002) Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 223:474–480

    Article  PubMed  Google Scholar 

  14. Mühlenbruch G, Wildberger JE, Koos R et al (2005) Coronary calcium scoring using 16-row multislice computed tomography: nonenhanced versus contrast-enhanced studies in vitro and in vivo. Invest Radiol 40:148–154

    Article  PubMed  Google Scholar 

  15. Callister TQ, Cooil B, Raya SP et al (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208:807–814

    PubMed  CAS  Google Scholar 

  16. Hansen J, Jessen KA, Jurik AG (1997) Dose descriptors for implementation of reference doses in computed tomography. Phys Medica 13(1):116–119

    Google Scholar 

  17. Jessen KA, Shrimpton PC, Geleijns J et al (1999) Dosimetry for optimisation of patient protection in computed tomography. Appl Radiat Isot 50:165–172

    Article  PubMed  CAS  Google Scholar 

  18. D'Agostino RB (1986) Tests for normal distribution. In: D'Agostino RB, Stepenes MA (eds) Goodness-of-fit techniques. Marcel Dekker, New York, pp 367–390

    Google Scholar 

  19. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  PubMed  CAS  Google Scholar 

  20. Lockhart ME, Fielding JR, Richter HE et al (2008) Reproducibility of dynamic MR imaging pelvic measurements. Radiology 249:534–540

    Article  PubMed  Google Scholar 

  21. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8;1(8476):307–10

    Google Scholar 

  22. Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22(1):85–93

    Article  PubMed  CAS  Google Scholar 

  23. Sevrukov AB, Bland JM, Kondos GT (2005) Serial electron beam CT measurements of coronary artery calcium: has your patient’s calcium score actually changed? AJR 185:546–553

    Article  Google Scholar 

  24. International Organization for Standardization. Accuracy (trueness and precision) of measurement methods and results. Part 1. General principles and definitions. Geneva, Switzerland: International Organization for Standardization, 1994:ISO 5725-1

  25. British Standards Institution (1975) Precision of test methods 1: guide for determination and reproducibility for a standard test method (BS 957, Part 1). BSI, London

    Google Scholar 

  26. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  27. Altman DG (1993) Construction of age-related reference centiles using absolute residuals. Stat Med 30;12:917–924

    Google Scholar 

  28. Rumberger JA, Simons DB, Fitzpatrick LA (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    PubMed  CAS  Google Scholar 

  29. Pham PH, Rao DS, Vasunilashorn F (2006) Computed tomography calcium quantification as a measure of atherosclerotic plaque morphology and stability. Invest Radiol 41:674–680

    Article  PubMed  Google Scholar 

  30. Ulzheimer S, Kalender WA (2003) Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 13:484–497

    PubMed  Google Scholar 

  31. Mori S, Nishizawa K, Kondo C (2008) Effective doses in subjects undergoing computed tomography cardiac imaging with the 256-multislice CT scanner. Eur J Radiol 65:442–448

    Article  PubMed  Google Scholar 

  32. Rutten A, Isgum I, Prokop M (2008) Coronary calcification: effect of small variation of scan starting position on Agatston, volume, and mass scores. Radiology 246:90–98

    Article  PubMed  Google Scholar 

  33. Groen JM, Greuter MJ, Schmidt B (2007) The influence of heart rate, slice thickness, and calcification density on calcium scores using 64-slice multidetector computed tomography: a systematic phantom study. Invest Radiol 42:848–855

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Glodny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glodny, B., Helmel, B., Trieb, T. et al. A method for calcium quantification by means of CT coronary angiography using 64-multidetector CT: very high correlation with agatston and volume scores. Eur Radiol 19, 1661–1668 (2009). https://doi.org/10.1007/s00330-009-1345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1345-2

Keywords

Navigation