Skip to main content
Log in

Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to prospectively assess the contribution of diffusion-weighted MR imaging (DWI) for characterizing complex adnexal masses. Seventy-seven women (22–87 years old) with complex adnexal masses (30 benign and 47 malignant) underwent MR imaging including DWI before surgery. Conventional morphological MR imaging criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC) measurements of cystic and solid components. Positive likelihood ratios (PLR) were calculated for predicting benignity and malignancy. The most significant criteria for predicting benignity were low b 1,000 signal intensity within the solid component (PLR = 10.9), low T2 signal intensity within the solid component (PLR = 5.7), absence of solid portion (PLR = 3.1), absence of ascites or peritoneal implants (PLR = 2.3) and absence of papillary projections (PLR = 2.3). ADC measurements did not contribute to differentiating benign from malignant adnexal masses. All masses that displayed simultaneously low signal intensity within the solid component on T2-weighted and on b 1,000 diffusion-weighted images were benign. Alternatively, the presence of a solid component with intermediate T2 signal and high b 1,000 signal intensity was associated with a PLR of 4.5 for a malignant adnexal tumour. DWI signal intensity is an accurate tool for predicting benignity of complex adnexal masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Curtin JP (1994) Management of the adnexal mass. Gynecol Oncol 55:S42–S46

    Article  PubMed  CAS  Google Scholar 

  2. Kinkel K, Hricak H, Lu Y, Tsuda K, Filly RA (2000) US characterization of ovarian masses: a meta-analysis. Radiology 217:803–811

    PubMed  CAS  Google Scholar 

  3. Rieber A, Nussle K, Stohr I et al (2001) Preoperative diagnosis of ovarian tumors with MR imaging: comparison with transvaginal sonography, positron emission tomography, and histologic findings. AJR Am J Roentgenol 177:123–129

    PubMed  CAS  Google Scholar 

  4. Sohaib SA, Mills TD, Sahdev A et al (2005) The role of magnetic resonance imaging and ultrasound in patients with adnexal masses. Clin Radiol 60:340–348

    Article  PubMed  CAS  Google Scholar 

  5. Jung SE, Lee JM, Rha SE, Byun JY, Jung JI, Hahn ST (2002) CT and MR imaging of ovarian tumors with emphasis on differential diagnosis. Radiographics 22:1305–1325

    Article  PubMed  Google Scholar 

  6. Togashi K, Nishimura K, Itoh K et al (1987) Ovarian cystic teratomas: MR imaging. Radiology 162:669–673

    PubMed  CAS  Google Scholar 

  7. Bazot M, Darai E, Hourani R et al (2004) Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology 232:379–389

    Article  PubMed  Google Scholar 

  8. Bazot M, Nassar-Slaba J, Thomassin-Naggara I, Cortez A, Uzan S, Darai E (2006) MR imaging compared with intraoperative frozen-section examination for the diagnosis of adnexal tumors; correlation with final histology. Eur Radiol 16:2687–2699

    Article  PubMed  Google Scholar 

  9. Moteki T, Horikoshi H, Endo K (2002) Relationship between apparent diffusion coefficient and signal intensity in endometrial and other pelvic cysts. Magn Reson Imaging 20:463–470

    Article  PubMed  Google Scholar 

  10. Nakayama T, Yoshimitsu K, Irie H et al (2005) Diffusion-weighted echo-planar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: usefulness of detecting keratinoid substances in mature cystic teratomas. J Magn Reson Imaging 22:271–278

    Article  PubMed  Google Scholar 

  11. Koyama T, Togashi K (2007) Functional MR imaging of the female pelvis. J Magn Reson Imaging 25:1101–1112

    Article  PubMed  Google Scholar 

  12. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  13. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  14. Tsuruda JS, Chew WM, Moseley ME, Norman D (1990) Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJR Am J Roentgenol 155:1059–1065

    PubMed  CAS  Google Scholar 

  15. Chen S, Ikawa F, Kurisu K, Arita K, Takaba J, Kanou Y (2001) Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging. AJNR Am J Neuroradiol 22:1089–1096

    PubMed  CAS  Google Scholar 

  16. Stadnik TW, Chaskis C, Michotte A et al (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 22:969–976

    PubMed  CAS  Google Scholar 

  17. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  PubMed  CAS  Google Scholar 

  18. Yamashita Y, Tang Y, Takahashi M (1998) Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging. J Magn Reson Imaging 8:367–374

    Article  PubMed  CAS  Google Scholar 

  19. Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  20. Cova M, Squillaci E, Stacul F et al (2004) Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 77:851–857

    Article  PubMed  CAS  Google Scholar 

  21. Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42

    Article  PubMed  Google Scholar 

  22. Sato C, Naganawa S, Nakamura T et al (2005) Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 21:258–262

    Article  PubMed  Google Scholar 

  23. Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O (2005) Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15:71–78

    Article  PubMed  Google Scholar 

  24. Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M (2006) Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 24:319–324

    Article  PubMed  Google Scholar 

  25. Nasu K, Kuroki Y, Nawano S et al (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130

    Article  PubMed  Google Scholar 

  26. Matsuki M, Inada Y, Tatsugami F, Tanikake M, Narabayashi I, Katsuoka Y (2007) Diffusion-weighted MR imaging for urinary bladder carcinoma: initial results. Eur Radiol 17:201–204

    Article  PubMed  Google Scholar 

  27. Inada Y, Matsuki M, Nakai G, et al (2008) Body diffusion-weighted MR imaging of uterine endometrial cancer: Is it helpful in the detection of cancer in nonenhanced MR imaging? Eur J Radiol. doi:10.1016/j.ejrad.2007.11.042

  28. Moteki T, Ishizaka H (1998) Evaluation of cystic ovarian lesions using apparent diffusion coefficient calculated from turboFLASH MR images. Br J Radiol 71:612–620

    PubMed  CAS  Google Scholar 

  29. Moteki T, Ishizaka H (1999) Evaluation of cystic ovarian lesions using apparent diffusion coefficient calculated from reordered turboflash MR images. Magn Reson Imaging 17:955–963

    Article  PubMed  CAS  Google Scholar 

  30. Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I (2000) Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet Gynecol 16:500–505

    Article  PubMed  CAS  Google Scholar 

  31. Siegelman ES, Outwater EK (1999) Tissue characterization in the female pelvis by means of MR imaging. Radiology 212:5–18

    PubMed  CAS  Google Scholar 

  32. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    Article  PubMed  CAS  Google Scholar 

  33. Sohaib SA, Sahdev A, Van Trappen P, Jacobs IJ, Reznek RH (2003) Characterization of adnexal mass lesions on MR imaging. AJR Am J Roentgenol 180:1297–1304

    PubMed  Google Scholar 

  34. Fauvet R, Boccara J, Dufournet C, Poncelet C, Darai E (2005) Laparoscopic management of borderline ovarian tumors: results of a French multicenter study. Ann Oncol 16(3):403–410

    Article  PubMed  CAS  Google Scholar 

  35. Szafer A, Zhong J, Anderson AW, Gore JC (1995) Diffusion-weighted imaging in tissues: theoretical models. NMR Biomed 8:289–296

    Article  PubMed  CAS  Google Scholar 

  36. Hayashida Y, Hirai T, Morishita S et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425

    PubMed  CAS  Google Scholar 

  37. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17:1385–1393

    Article  PubMed  Google Scholar 

  38. Maldjian JA, Listerud J, Moonis G, Siddiqi F (2001) Computing diffusion rates in T2-dark hematomas and areas of low T2 signal. AJNR Am J Neuroradiol 22:112–118

    PubMed  CAS  Google Scholar 

  39. Kaji Y, Matsuo M, Matsuki M et al (2002) Cystic ovarian lesions in SSFP diffusion imaging. Magn Reson Med Sci 1:183–189

    Article  PubMed  Google Scholar 

  40. Katayama M, Masui T, Kobayashi S et al (2002) Diffusion-weighted echo planar imaging of ovarian tumors: is it useful to measure apparent diffusion coefficients? J Comput Assist Tomogr 26:250–256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Cuenod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomassin-Naggara, I., Daraï, E., Cuenod, C.A. et al. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses. Eur Radiol 19, 1544–1552 (2009). https://doi.org/10.1007/s00330-009-1299-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1299-4

Keywords

Navigation