Skip to main content
Log in

Kinematic biomechanical assessment of human articular cartilage transplants in the knee using 3-T MRI: an in vivo reproducibility study

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aims of this study were to examine the clinical feasibility and reproducibility of kinematic MR imaging with respect to changes in T 2 in the femoral condyle articular cartilage. We used a flexible knee coil, which allows acquisition of data in different positions from 40° flexion to full extension during MR examinations. The reproducibility of T 2 measurements was evaluated for inter-rater and inter-individual variability and determined as a coefficient of variation (CV) for each volunteer and rater. Three different volunteers were measured twice and regions of interest (ROIs) were selected by three raters at different time points. To prove the clinical feasibility of this method, 20 subjects (10 patients and 10 age- and sex-matched volunteers) were enrolled in the study. Inter-rater variability ranged from 2 to 9 and from 2 to 10% in the deep and superficial zones, respectively. Mean inter-individual variability was 7% for both zones. Different T 2 values were observed in the superficial cartilage zone of patients compared with volunteers. Since repair tissue showed a different behavior in the contact zone compared with healthy cartilage, a possible marker for improved evaluation of repair tissue quality after matrix-associated autologous chondrocyte transplantation (MACT) may be available and may allow biomechanical assessment of cartilage transplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cohen NP, Foster RJ, Mow VC (1998) Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J Orthop Sport Phys 28:203–215

    CAS  Google Scholar 

  2. Recht MP, Goodwin DW, Winalski CS et al (2005) MRI of articular cartilage: revisiting current status and future directions. Am J Roentgenol 185:899–914

    Article  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  4. Behrens P, Ehlers E, Kochermann K et al (1999) New therapy procedure for localized cartilage defects: encouraging results with autologous chondrocyte implantation. MMW Fortschr Med 141:49–51

    PubMed  CAS  Google Scholar 

  5. Marlovits S, Trattnig S (2006) Cartilage repair. Eur J Radiol 57:1–2

    Article  PubMed  Google Scholar 

  6. Chung CB, Frank LR, Resnick D (2001) Cartilage imaging techniques-Current clinical applications and state of the art imaging. Clin Orthop Relat Res S370–S378

  7. Marcacci M, Berruto M, Brocchetta D et al (2005) Articular cartilage engineering with Hyalograft® C-3-year clinical results. Clin Orthop Relat Res 96–105

  8. Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 214:259–266

    PubMed  CAS  Google Scholar 

  9. Mlynarik V, Sulzbacher I, Bittsansky M et al (2003) Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging 17:440–444

    Article  PubMed  Google Scholar 

  10. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2−)-enhanced MRI: (dGEMRIC) for clinical evaluation of articular cartilage. Magnet Reson Med 45:36–41

    Article  CAS  Google Scholar 

  11. Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247:154–161

    PubMed  Google Scholar 

  12. White LM, Sussman MS, Hurtig M et al (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414

    Article  PubMed  Google Scholar 

  13. Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 tesla: an in vivo cross-sectional study. Invest Radiol 42:442–448

    Article  PubMed  Google Scholar 

  14. Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging 26:974–982

    Article  PubMed  Google Scholar 

  15. Tiderius CJ, Olsson LE, Leander P et al (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magnet Reson Med 49:488–492

    Article  Google Scholar 

  16. Williams A, Gillis A, McKenzie C et al (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol 182:167–172

    Google Scholar 

  17. Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 tesla. Eur Radiol 18:1251–1259

    Article  PubMed  Google Scholar 

  18. Regatte RR, Kaufman JH, Noyszewski EA et al (1999) Sodium and proton MR properties of cartilage during compression. J Magn Reson Imaging 10:961–967

    Article  PubMed  CAS  Google Scholar 

  19. Alhadlaq HA, Xia Y (2004) The structural adaptations in compressed articular cartilage by microscopic MRI (mu MRI) T-2 anisotropy. Osteoarthr Cartil 12:887–894

    Article  PubMed  Google Scholar 

  20. Kaufman JH, Regatte RR, Bolinger L et al (1999) A novel approach to observing articular cartilage deformation in vitro via magnetic resonance imaging. J Magn Reson Imaging 9:653–662

    Article  PubMed  CAS  Google Scholar 

  21. Herberhold C, Faber S, Stammberger T et al (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295

    Article  PubMed  CAS  Google Scholar 

  22. Mosher TJ, Smith HE, Collins C et al (2005) Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 234:245–249

    Article  PubMed  Google Scholar 

  23. Liess C, Lusse S, Karger N et al (2002) Detection of changes in cartilage water content using MRI T-2-mapping in vivo. Osteoarthr Cartil 10:907–913

    Article  PubMed  CAS  Google Scholar 

  24. Eckstein F, Hudelmaier M, Putz R (2006) The effects of exercise on human articular cartilage. J Anat 208:491–512

    Article  PubMed  CAS  Google Scholar 

  25. Kurkijarvi JE, Nissi MJ, Rieppo J et al (2007) The zonal architecture of human articular cartilage described by T(2) relaxation time in the presence of Gd-DTPA(2−). Magn Reson Imaging

  26. David-Vaudey E, Ghosh S, Ries M et al (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22:673–682

    Article  PubMed  Google Scholar 

  27. Nieminen MT, Rieppo J, Toyras J et al (2001) T-2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    Article  PubMed  CAS  Google Scholar 

  28. Recht M, Bobic V, Burstein D et al (2001) Magnetic resonance imaging of articular cartilage. Clin Orthop Relat Res S379–S396

  29. Smith HE, Mosher TJ, Dardzinski BJ et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55

    Article  PubMed  Google Scholar 

  30. Mosher TJ, Smith HE, Collins C et al (2005) Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 234:245–249

    Article  PubMed  Google Scholar 

  31. Rubenstein JD, Kim JK, Henkelman RM (1996) Effects of compression and recovery on bovine articular cartilage: appearance on MR images. Radiology 201:843–850

    PubMed  CAS  Google Scholar 

  32. Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247:154–161

    Article  PubMed  Google Scholar 

  33. Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T-2 mapping of matrix-associated autologous chondrocyte transplantcation at 3 tesla—an in vivo cross-sectional study. Invest Radiol 42:442–448

    Article  PubMed  Google Scholar 

  34. Marlovits S, Mamisch TC, Vekszler G et al (2008) Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs. Injury 39:S13–S25

    Article  PubMed  Google Scholar 

  35. Burstein D, Gray ML, Hartman AL et al (1993) Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 11:465–478

    Article  PubMed  CAS  Google Scholar 

  36. Mamisch TC, Menzel MI, Welsch GH et al (2008) Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla—preliminary results. Eur J Radiol 65:72–79

    Article  PubMed  Google Scholar 

  37. Nieminen MT, Toyras J, Rieppo J et al (2000) Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med 43:676–681

    Article  PubMed  CAS  Google Scholar 

  38. Henderson I, Francisco R, Oakes B et al (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee-a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12:209–216

    PubMed  Google Scholar 

  39. Minas T (2001) Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res S349–S361

  40. Marlovits S, Zeller P, Singer P et al (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57:24–31

    Article  PubMed  Google Scholar 

  41. Trattnig S, Ba-Ssalamah A, Pinker K et al (2005) Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 23:779–787

    Article  PubMed  CAS  Google Scholar 

  42. Winalski CS, Minas T (2000) Evaluation of chondral injuries by magnetic resonance imaging: repair assessments. Oper Tech Sports Med 8:108–119

    Article  Google Scholar 

  43. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463

    Article  PubMed  CAS  Google Scholar 

  44. Roberts S, McCall IW, Darby AJ et al (2003) Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 5:R60–R73

    Article  PubMed  Google Scholar 

  45. Niitsu M, Ikeda K, Itai Y (1998) Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament. Eur Radiol 8:113–115

    Article  PubMed  CAS  Google Scholar 

  46. Krampla W, Mayrhofer R, Malcher J et al (2001) MR imaging of the knee in marathon runners before and after competition. Skeletal Radiol 30:72–76

    Article  PubMed  CAS  Google Scholar 

  47. Niitsu M, Endo H, Ikeda K et al (2000) MR imaging of the flexed knee: comparison to the extended knee in delineation of meniscal lesions. Eur Radiol 10:1824–1827

    Article  PubMed  CAS  Google Scholar 

  48. Kiviranta P, Rieppo J, Korhonen RK et al (2006) Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J Orthop Res 24:690–699

    Article  PubMed  Google Scholar 

  49. Armstrong CG, Bahrani AS, Gardner DL (1979) In vitro measurement of articular cartilage deformations in the intact human hip joint under load. J Bone Joint Surg Am 61:744–755

    PubMed  CAS  Google Scholar 

  50. Kaufman JH, Regatte RR, Duvvuri U et al (2000) Cartilage T2 dynamics during compression. Proc Intl Sot Mag Reson Med 8:2116

    Google Scholar 

  51. Mow VC, Kuei SC, Lai WM et al (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102:73–84

    Article  PubMed  CAS  Google Scholar 

  52. Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394

    Article  PubMed  CAS  Google Scholar 

  53. Lusse S, Knauss R, Werner A et al (1995) Action of compression and cations on the proton and deuterium relaxation in cartilage. Magn Reson Med 33:483–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Funding for this study was provided by the Austrian Science Fund (FWF) FWF P-18110-B15 and FWF-TRP 494-B05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Juras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juras, V., Welsch, G.H., Millington, S. et al. Kinematic biomechanical assessment of human articular cartilage transplants in the knee using 3-T MRI: an in vivo reproducibility study. Eur Radiol 19, 1246–1252 (2009). https://doi.org/10.1007/s00330-008-1242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1242-0

Keywords

Navigation