Skip to main content

Advertisement

Log in

Comparative evaluation of chest radiography, low-field MRI, the Shwachman-Kulczycki score and pulmonary function tests in patients with cystic fibrosis

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether the parenchymal lung damage in patients suffering from cystic fibrosis (CF) can be equivalently quantified by the Chrispin-Norman (CN) scores determined with low-field magnetic resonance imaging (MRI) and conventional chest radiography (CXR). Both scores were correlated with pulmonary function tests (PFT) and the Shwachman-Kulczycki method (SKM). To evaluate the comparability of MRI and CXR for different states of the disease, all scores were applied to patients divided into three age groups. Seventy-three CF patients (mean SKM score: 62 ± 8) with a median age (range) of 14 years (7–32) were included. The mean CN scores determined with both imaging methods were comparable (CXR: 12.1 ± 4.7; MRI: 12.0 ± 4.5) and showed high correlation (P < 0.05, R = 0.97). Only weak correlations were found between imaging, PFT, and SKM. Both imaging modalities revealed significantly more severe disease expression with age, while PFT and SKM failed to detect early signs of disease. We conclude that imaging of the lung in CF patients is capable of detecting subtle and early parenchymal destruction before lung function or clinical scoring is affected. Furthermore, low-field MRI revealed high consistency with chest radiography and may be used for a thorough follow-up while avoiding radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenecker J, Huth S, Rudolph C (2006) Gene therapy for cystic fibrosis lung disease: current status and future perspectives. Curr Opin Mol Ther 8:439–445

    PubMed  CAS  Google Scholar 

  2. Wiedemann B, Steinkamp G, Sens B, Stern M (2001) The German cystic fibrosis quality assurance project: clinical features in children and adults. Eur Respir J 17:1187–1194

    Article  PubMed  CAS  Google Scholar 

  3. Ruzal-Shapiro C (1998) Cystic fibrosis. An overview. Radiol Clin North Am 36:143–61

    Article  PubMed  CAS  Google Scholar 

  4. Yankaskas JR, Marshall BC, Sufian B, Simon RH, Rodman D (2004) Cystic fibrosis adult care: consensus conference report. Chest 125:1S–39S

    Article  PubMed  Google Scholar 

  5. Brasfield D, Hicks G, Soong S, Peters J, Tiller R (1980) Evaluation of scoring system of the chest radiograph in cystic fibrosis: a collaborative study. AJR Am J Roentgenol 134:1195–1198

    PubMed  CAS  Google Scholar 

  6. Chrispin AR, Norman AP (1974) The systematic evaluation of the chest radiograph with cystic fibrosis. Pediatr Radiol 2:101–105

    Article  PubMed  CAS  Google Scholar 

  7. Conway SP, Pond MN, Bowler I, Smith DL, Simmonds EJ, Joanes DN, Hambleton G, Hiller EJ, Stableforth DE, Weller P et al (1994) The chest radiograph in cystic fibrosis: a new scoring system compared with the Chrispin-Norman and Brasfield scores. Thorax 49:860–862

    Article  PubMed  CAS  Google Scholar 

  8. Kauczor HU, Kreitner KF (1999) MRI of the pulmonary parenchyma. Eur Radiol 9:1755–1764

    Article  PubMed  CAS  Google Scholar 

  9. Ley S, Puderbach M, Fink C, Eichinger M, Plathow C, Teiner S, Wiebel M, Müller FM, Kauczor HU (2005) Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol 15:1575–1580

    Article  PubMed  Google Scholar 

  10. Gamsu G, Sostman D (1989) Magnetic resonance imaging of the thorax. Am Rev Respir Dis 139:254–274

    PubMed  CAS  Google Scholar 

  11. Mayo JR, MacKay A, Muller NL (1992) MR imaging of the lungs: value of short TE spin-echo pulse sequences. AJR Am J Roentgenol 159:951–956

    PubMed  CAS  Google Scholar 

  12. Muller CJ, Loffler R, Deimling M, Peller M, Reiser M (2001) MR lung imaging at 0.2 T with T1-weighted true FISP: native and oxygen-enhanced. J Magn Reson Imaging 14:164–168

    Article  PubMed  CAS  Google Scholar 

  13. Deimling M (2000) True FISP imaging of lung parenchyma at 0.2 Tesla. Proc Int Soc Mag Reson Med 8:2202

    Google Scholar 

  14. Martirosian P, Boss A, Fenchel M, Deimling M, Schafer J, Claussen CD, Schick F (2006) Quantitative lung perfusion mapping at 0.2 T using FAIR true-FISP MRI. Magn Reson Med 55:1065–1074

    Article  PubMed  Google Scholar 

  15. Schafer JF, Vollmar J, Schick F, Seemann MD, Mehnert F, Vonthein R, Aebert H, Claussen CD (2002) Imaging diagnosis of solitary pulmonary nodules on an open low-field MRI system–comparison of two MR sequences with spiral CT. Röfo 174:1107–1114

    PubMed  CAS  Google Scholar 

  16. Zapke M, Topf HG, Zenker M, Kuth R, Deimling M, Kreisler P, Rauh M, Chefd’hotel C, Geiger B, Rupprecht T (2006) Magnetic resonance lung function–a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial. Respir Res 7:106

    Article  PubMed  Google Scholar 

  17. Abolmaali ND, Schmitt J, Krauss S, Bretz F, Deimling M, Jacobi V, Vogl TJ (2004) MR imaging of lung parenchyma at 0.2 T: evaluation of imaging techniques, comparative study with chest radiography and interobserver analysis. Eur Radiol 14:703–708

    Article  PubMed  Google Scholar 

  18. Shwachman H, Kulczycki LL (1958) Long-term study of one hundred five patients with cystic fibrosis; studies made over a five- to fourteen-year period. AMA J Dis Child 96:6–15

    PubMed  CAS  Google Scholar 

  19. Casselman JW, Kuhweide R, Deimling M, Ampe W, Dehaene I, Meeus L (1993) Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 14:47–57

    PubMed  CAS  Google Scholar 

  20. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  21. Passing H, Bablock W (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. J Clin Chem Clin Biochem 21:709–720

    PubMed  CAS  Google Scholar 

  22. ICRP (1991) ICRP publication 60: 1990 recommendations of the International Commission on Radiological Protection edn. Elsevier, Amsterdam

  23. Hebestreit A, Schultz G, Trusen A, Hebestreit H (2004) Follow-up of acute pulmonary complications in cystic fibrosis by magnetic resonance imaging: a pilot study. Acta Paediatr 93:414–416

    Article  PubMed  CAS  Google Scholar 

  24. Eichinger M, Puderbach M, Heussel CP, Kauczor HU (2006) MRI in mucoviscidosis (cystic fibrosis). Radiologe 46:275–281

    Article  PubMed  CAS  Google Scholar 

  25. Terheggen-Lagro S, Truijens N, van Poppel N, Gulmans V, van der Laag J, van der Ent C (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445

    Article  PubMed  Google Scholar 

  26. Wagner M, Bowing B, Kuth R, Deimling M, Rascher W, Rupprecht T (2001) Low field thoracic MRI–a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983

    Article  PubMed  CAS  Google Scholar 

  27. Cooper PJ, Robertson CF, Hudson IL, Phelan PD (1990) Variability of pulmonary function tests in cystic fibrosis. Pediatr Pulmonol 8:16–22

    Article  PubMed  CAS  Google Scholar 

  28. Brody AS, Klein JS, Molina PL, Quan J, Bean JA, Wilmott RW (2004) High-resolution computed tomography in young patients with cystic fibrosis: distribution of abnormalities and correlation with pulmonary function tests. J Pediatr 145:323–8

    Article  PubMed  Google Scholar 

  29. Matthews DJ, Warner JO, Chrispin AR, Norman AP (1977) The relationship between chest radiographic scores and respiratory function tests in children with cystic fibrosis. Pediatr Radiol 5:198–200

    Article  Google Scholar 

  30. Benden C, Wallis C, Owens CM, Ridout DA, Dinwiddie R (2005) The Chrispin-Norman score in cystic fibrosis: doing away with the lateral view. Eur Respir J 26:894–897

    Article  PubMed  CAS  Google Scholar 

  31. de Jong PA, Nakano Y, Lequin MH, Mayo JR, Woods R, Pare PD, Tiddens HA (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97

    Article  PubMed  Google Scholar 

  32. de Jong PA, Nakano Y, Lequin MH, Tiddens HA (2006) Dose reduction for CT in children with cystic fibrosis: is it feasible to reduce the number of images per scan? Pediatr Radiol 36:50–53

    Article  PubMed  Google Scholar 

  33. Abolmaali N, Schmidt H, Anjorin A, Posselt H-G, Vogl TJ (2002) Chrispin-Norman-score and Bhalla-score of patients with cystic fibrosis: comparative study of chest radiographs and MR-imaging. Eur Radiol 12(Suppl 1):227

    Google Scholar 

  34. Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmähl A, Fink C, Plathow C, Wiebel M, Müller FM, Kauczor HU (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–24

    Article  PubMed  Google Scholar 

  35. Altes TA, Eichinger M, Puderbach M (2007) Magnetic resonance imaging of the lung in cystic fibrosis. Proc Am Thorac Soc 4:321–327

    Article  PubMed  Google Scholar 

  36. van Beek EJ, Hill C, Woodhouse N, Fichele S, Fleming S, Howe B, Bott S, Wild JM, Taylor CJ (2007) Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 17:1018–1024

    Article  PubMed  Google Scholar 

  37. McMahon CJ, Dodd JD, Hill C, Woodhouse N, Wild JM, Fichele S, Gallagher CG, Skehan SJ, van Beek EJ, Masterson JB (2006) Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry. Eur Radiol 16:2483–2490

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Nasreddin Abolmaali is kindly sponsored by the “Bundesministerium für Bildung und Forschung,” BMBF Contract 03ZIK042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasreddin Abolmaali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjorin, A., Schmidt, H., Posselt, HG. et al. Comparative evaluation of chest radiography, low-field MRI, the Shwachman-Kulczycki score and pulmonary function tests in patients with cystic fibrosis. Eur Radiol 18, 1153–1161 (2008). https://doi.org/10.1007/s00330-008-0884-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0884-2

Keywords

Navigation