Skip to main content

Advertisement

Log in

MR classification of renal masses with pathologic correlation

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To perform a feature analysis of malignant renal tumors evaluated with magnetic resonance (MR) imaging and to investigate the correlation between MR imaging features and histopathological findings. MR examinations in 79 malignant renal masses were retrospectively evaluated, and a feature analysis was performed. Each renal mass was assigned to one of eight categories from a proposed MRI classification system. The sensitivity and specificity of the MRI classification system to predict the histologic subtype and nuclear grade was calculated. Subvoxel fat on chemical shift imaging correlated to clear cell type (p < 0.05); sensitivity = 42%, specificity = 100%. Large size, intratumoral necrosis, retroperitoneal vascular collaterals, and renal vein thrombosis predicted high-grade clear cell type (p < 0.05). Small size, peripheral location, low intratumoral SI on T2-weighted images, and low-level enhancement were associated with low-grade papillary carcinomas (p < 0.05). The sensitivity and specificity of the MRI classification system for diagnosing low grade clear cell, high-grade clear cell, all clear cell, all papillary, and transitional carcinomas were 50% and 94%, 93% and 75%, 92% and 83%, 80% and 94%, and 100% and 99%, respectively. The MRI feature analysis and proposed classification system help predict the histological type and nuclear grade of renal masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jayson M, Sanders H (1998) Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51:203–205

    Article  PubMed  CAS  Google Scholar 

  2. Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA (2004) The natural history of incidentally detected small renal masses. Cancer 100:738–745

    Article  PubMed  Google Scholar 

  3. Lam JS, Shvarts O, Leppert JT, Figlin RA, Belldegrun AS (2005) Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J Urol 173:1853–1862

    Article  PubMed  Google Scholar 

  4. Stadler WM (2005) Targeted agents for the treatment of advanced renal cell carcinoma. Cancer 104:2323–2333

    Article  PubMed  CAS  Google Scholar 

  5. Kaelin WG Jr (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10:6290S–6295S

    Article  PubMed  CAS  Google Scholar 

  6. Hecht EM, Israel GM, Krinsky GA et al (2004) Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 232:373–378

    Article  PubMed  Google Scholar 

  7. Rofsky NM, Bosniak MA (1997) MR imaging in the evaluation of small (< or =3.0 cm) renal masses. Magn Reson Imaging Clin N Am 5:67–81

    PubMed  CAS  Google Scholar 

  8. Rominger MB, Kenney PJ, Morgan DE, Bernreuter WK, Listinsky JJ (1992) Gadolinium-enhanced MR imaging of renal masses. Radiographics 12:1097–1116; discussion 1117–1098

    PubMed  CAS  Google Scholar 

  9. Semelka RC, Hricak H, Stevens SK, Finegold R, Tomei E, Carroll PR (1991) Combined gadolinium-enhanced and fat-saturation MR imaging of renal masses. Radiology 178:803–809

    PubMed  CAS  Google Scholar 

  10. Semelka RC, Shoenut JP, Magro CM, Kroeker MA, MacMahon R, Greenberg HM (1993) Renal cancer staging: comparison of contrast-enhanced CT and gadolinium-enhanced fat-suppressed spin-echo and gradient-echo MR imaging. J Magn Reson Imaging 3:597–602

    Article  PubMed  CAS  Google Scholar 

  11. Ho VB, Allen SF, Hood MN, Choyke PL (2002) Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology 224:695–700

    Article  PubMed  Google Scholar 

  12. Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10

    PubMed  CAS  Google Scholar 

  13. Bosniak MA, Megibow AJ, Hulnick DH, Horii S, Raghavendra BN (1988) CT diagnosis of renal angiomyolipoma: the importance of detecting small amounts of fat. AJR Am J Roentgenol 151:497–501

    PubMed  CAS  Google Scholar 

  14. Eilenberg SS, Lee JK, Brown J, Mirowitz SA, Tartar VM (1990) Renal masses: evaluation with gradient-echo Gd-DTPA-enhanced dynamic MR imaging. Radiology 176:333–338

    PubMed  CAS  Google Scholar 

  15. Israel GM, Hindman N, Bosniak MA (2004) Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231:365–371

    Article  PubMed  Google Scholar 

  16. Semelka RC, Shoenut JP, Kroeker MA, MacMahon RG, Greenberg HM (1992) Renal lesions: controlled comparison between CT and 1.5-T MR imaging with nonenhanced and gadolinium-enhanced fat-suppressed spin-echo and breath-hold FLASH techniques [see comments]. Radiology 182:425–430

    PubMed  CAS  Google Scholar 

  17. Yoshimitsu K, Honda H, Kuroiwa T et al (1999) MR detection of cytoplasmic fat in clear cell renal cell carcinoma utilizing chemical shift gradient-echo imaging. J Magn Reson Imaging 9:579–585

    Article  PubMed  CAS  Google Scholar 

  18. Roy C, Sauer B, Lindner V, Lang H, Saussine C, Jacqmin D (2007) MR Imaging of papillary renal neoplasms: potential application for characterization of small renal masses. Eur Radiol 17:193–200

    Article  PubMed  Google Scholar 

  19. Yoshimitsu K, Irie H, Tajima T et al (2004) MR imaging of renal cell carcinoma: its role in determining cell type. Radiat Med 22:371–376

    PubMed  Google Scholar 

  20. Earls J, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC (1997) Hepatic arterial-phase dynamic gadolinium-enhanced MR imaging: optimization with a test examination and a power injector. Radiology 202:268–273

    PubMed  CAS  Google Scholar 

  21. Israel GM, Hindman N, Hecht E, Krinsky G (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184:1868–1872

    PubMed  Google Scholar 

  22. Zhang J, Pedrosa I, Rofsky NM (2003) MR techniques for renal imaging. Radiol Clin North Am 41:877–907

    Article  PubMed  Google Scholar 

  23. Agresti A, Coull B (1998) Approximate is better than “exact” for interval estimation of binomial proportions. American Statistician 119–126

  24. Chawla SN, Crispen PL, Hanlon AL, Greenberg RE, Chen DY, Uzzo RG (2006) The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J Urol 175:425–431

    Article  PubMed  Google Scholar 

  25. Kouba E, Smith A, McRackan D, Wallen EM, Pruthi RS (2007) Watchful waiting for solid renal masses: insight into the natural history and results of delayed intervention. J Urol 177:466–470

    Article  PubMed  Google Scholar 

  26. Guinan P, Frank W, Saffrin R, Rubenstein M (1994) Staging and survival of patients with renal cell carcinoma. Semin Surg Oncol 10:47–50

    Article  PubMed  CAS  Google Scholar 

  27. Kuczyk M, Wegener G, Merseburger AS et al (2005) Impact of tumor size on the long-term survival of patients with early stage renal cell cancer. World J Urol 23:50–54

    Article  PubMed  CAS  Google Scholar 

  28. Leibovich BC, Pantuck AJ, Bui MH et al (2003) Current staging of renal cell carcinoma. Urol Clin North Am 30:481–497, viii

    Article  PubMed  Google Scholar 

  29. Han KR, Janzen NK, McWhorter VC et al (2004) Cystic renal cell carcinoma: biology and clinical behavior. Urol Oncol 22:410–414

    PubMed  Google Scholar 

  30. Mejean A, Hopirtean V, Bazin JP et al (2003) Prognostic factors for the survival of patients with papillary renal cell carcinoma: meaning of histological typing and multifocality. J Urol 170:764–767

    Article  PubMed  Google Scholar 

  31. Herts BR, Coll DM, Novick AC et al (2002) Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol 178:367–372

    PubMed  Google Scholar 

  32. Turner KJ, Moore JW, Jones A et al (2002) Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 62:2957–2961

    PubMed  CAS  Google Scholar 

  33. Djordjevic G, Mozetic V, Mozetic DV et al (2007) Prognostic significance of vascular endothelial growth factor expression in clear cell renal cell carcinoma. Pathol Res Pract 203:99–106

    Article  PubMed  CAS  Google Scholar 

  34. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML (2003) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27:612–624

    Article  PubMed  Google Scholar 

  35. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    PubMed  CAS  Google Scholar 

  36. Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG (1997) Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology 205:103–107

    PubMed  CAS  Google Scholar 

  37. Storkel S, Eble JN, Adlakha K et al (1997) Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80:987–989

    Article  PubMed  CAS  Google Scholar 

  38. Kim JK, Kim SH, Jang YJ et al (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174–180

    Article  PubMed  Google Scholar 

  39. Milner J, McNeil B, Alioto J et al (2006) Fat poor renal angiomyolipoma: patient, computerized tomography and histological findings. J Urol 176:905–909

    Article  PubMed  Google Scholar 

  40. Korobkin M, Lombardi TJ, Aisen AM et al (1995) Characterization of adrenal masses with chemical shift and gadolinium-enhanced MR imaging. Radiology 197:411–418

    PubMed  CAS  Google Scholar 

  41. Mayo-Smith WW, Lee MJ, McNicholas MM, Hahn PF, Boland GW, Saini S (1995) Characterization of adrenal masses (<5 cm) by use of chemical shift MR imaging: observer performance versus quantitative measures. AJR Am J Roentgenol 165:91–95

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Pedrosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrosa, I., Chou, M.T., Ngo, L. et al. MR classification of renal masses with pathologic correlation. Eur Radiol 18, 365–375 (2008). https://doi.org/10.1007/s00330-007-0757-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0757-0

Keywords

Navigation