Skip to main content
Log in

Evaluation of the influence of acquisition and reconstruction parameters for 16-row multidetector CT on coronary calcium scoring using a stationary and dynamic cardiac phantom

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

A calcium-scoring phantom with hydroxyapatite-filled cylindrical holes (0.5 to 4 mm) was used. High-resolution scans were performed for an accuracy baseline. The phantom was mounted to a moving heart phantom. Non-moving data with the implementation of an ECG-signal were acquired for different pitches (0.2/0.3), heart rates (60/80/95 bpm) and collimations (16 × 0.75/16 × 1.5 mm). Images were reconstructed with a cone-beam multi-cycle algorithm at a standard thickness/increment of 3 mm/1.5 mm and the thinnest possible thickness (0.8/0.4 and 2/1). Subsequently, ECG-gated moving calcium-scoring phantom data were acquired. The calcium volume and Agatston score were measured. The temporal resolution and reconstruction cycles were calculated. High-resolution scans determine the calcium volume with a high accuracy (mean overestimation, 0.8%). In the non-moving measurements, the volume underestimation ranged from about 6% (16 × 0.75 mm; 0.8/0.4 mm) to nearly 25% (16 × 1.5 mm; 3/1.5 mm). Moving scans showed increased measurement errors depending on the reconstructed RR interval, collimation, pitch, heart rate and gantry rotation time. Also, a correlation with the temporal resolution could be found. The reliability of calcium-scoring results can be improved with the use of a narrower collimation, a lower pitch and the reconstruction of thinner images, resulting in higher patient doses. The choice of the correct cardiac phase within the RR interval is essential to minimize measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  2. Rumberger JA, Brundage BH, Rader DJ, Kondos G (1999) Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 74:243–252

    Article  PubMed  CAS  Google Scholar 

  3. Becker CR (2005) Estimation of cardiac event risk by MDCT. Eur Radiol 15(Suppl 2):B17–B22

    PubMed  Google Scholar 

  4. Becker CR, Majeed A, Crispin A, Knez A, Schoepf UJ, Boekstegers P, Steinbeck G, Reiser MF (2005) CT measurement of coronary calcium mass: impact on global cardiac risk assessment. Eur Radiol 15:96–101

    Article  PubMed  Google Scholar 

  5. Weber C, Begemann P, Wedegartner U, Meinertz T, Adam G (2005) Calcium scoring and coronary angiography performed with multislice spiral CT-clinical experience. Fortschr Geb Rontgenstr 177:50–59

    Article  CAS  Google Scholar 

  6. Horiguchi J, Yamamoto H, Akiyama Y, Marukawa K, Hirai N, Ito K (2004) Coronary artery calcium scoring using 16-MDCT and a retrospective ECG-gating reconstruction algorithm. Am J Roentgenol 183:103–108

    Google Scholar 

  7. Ohnesorge B, Flohr T, Fischbach R, Kopp AF, Knez A, Schroder S, Schopf UJ, Crispin A, Klotz E, Reiser MF, Becker CR (2002) Reproducibility of coronary calcium quantification in repeat examinations with retrospectively ECG-gated multisection spiral CT. Eur Radiol 12:1532–1540

    Article  PubMed  CAS  Google Scholar 

  8. Horiguchi J, Yamamoto H, Akiyama Y, Hirai N, Marukawa K, Fukuda H, Ito K (2005) Variability of repeated coronary artery calcium measurements by 16-MDCT with retrospective reconstruction. Am J Roentgenol 184:1917–1923

    Google Scholar 

  9. Kopp AF, Ohnesorge B, Becker C, Schroder S, Heuschmid M, Kuttner A, Kuzo R, Claussen CD (2002) Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 225:113–119

    Article  PubMed  CAS  Google Scholar 

  10. Carr JJ, Nelson JC, Wong ND, McNitt-Gray M, Arad Y, Jacobs DR Jr, Sidney S, Bild DE, Williams OD, Detrano RC (2005) Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of Multi-Ethnic Study of Atherosclerosis (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) study. Radiology 234:35–43

    Article  PubMed  Google Scholar 

  11. Detrano RC, Anderson M, Nelson J, Wong ND, Carr JJ, McNitt-Gray M, Bild DE (2005) Coronary calcium measurements: effect of CT scanner type and calcium measure on rescan reproducibility-MESA study. Radiology 236:477–484

    Article  PubMed  Google Scholar 

  12. Ulzheimer S, Kalender WA (2003) Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 13:484–497

    PubMed  Google Scholar 

  13. Mahnken AH, Wildberger JE, Sinha AM, Flohr T, Truong HT, Krombach GA, Gunther RW (2002) Variation of the coronary calcium score depending on image reconstruction interval and scoring algorithm. Invest Radiol 37:496–502

    Article  PubMed  CAS  Google Scholar 

  14. Schlosser T, Hunold P, Schmermund A, Kuhl H, Waltering KU, Debatin JF, Barkhausen J (2004) Coronary artery calcium score: influence of reconstruction interval at 16-detector row CT with retrospective electrocardiographic gating. Radiology 233:586–589

    Article  PubMed  Google Scholar 

  15. Horiguchi J, Nakanishi T, Tamura A, Ito K (2002) Coronary artery calcium scoring using multicardiac computed tomography. J Comput Assist Tomogr 26:880–885

    Article  PubMed  Google Scholar 

  16. Hong C, Pilgram TK, Zhu F, Joe BN, Towler DA, Bae KT (2003) Improving mass measurement of coronary artery calcification using threshold correction and thin collimation in multi-detector row computed tomography: in vitro experiment. Acad Radiol 10:969–977

    Article  PubMed  Google Scholar 

  17. Ohnesorge B, Becker CR, Flohr T, Dorgelo J, Oudkerk M (2004) Multi-slice computed tomography-technical principles, clinical application and future perspectives in book. In: Oudkerk M (ed) Coronary radiology. Springer, Berlin Heidelberg New York, pp 87–115

    Google Scholar 

  18. Muhlenbruch G, Thomas C, Wildberger JE, Koos R, Das M, Hohl C, Katoh M, Gunther RW, Mahnken AH (2005) Effect of varying slice thickness on coronary calcium scoring with multislice computed tomography in vitro and in vivo. Invest Radiol 40:695–699

    Article  PubMed  Google Scholar 

  19. Mahnken AH, Muhlenbruch G, Koos R, Das M, Pohl S, Stanzel S, Gunther RW, Wildberger JE (2006) Influence of a small field-of-view size on the detection of coronary artery calcifications with MSCT: in vitro and in vivo study. Eur Radiol 16:358–364

    Article  PubMed  Google Scholar 

  20. Hong C, Bae KT, Pilgram TK (2003) Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector row CT-assessment of effects of different thresholds and quantification methods. Radiology 227:795–801

    Article  PubMed  Google Scholar 

  21. Hong C, Bae KT, Pilgram TK, Zhu F (2003) Coronary artery calcium quantification at multi-detector row CT: influence of heart rate and measurement methods on interacquisition variability initial experience. Radiology 228:95–100

    Article  PubMed  Google Scholar 

  22. van Ooijen PM, Vliegenthart R, Witteman JC, Oudkerk M (2005) Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15:102–110

    Article  PubMed  Google Scholar 

  23. Hong C, Pilgram TK, Zhu F, Bae KT (2004) Is coronary artery calcium mass related to Agatston score? Acad Radiol 11:286–292

    Article  PubMed  Google Scholar 

  24. Mahnken AH, Wildberger JE, Simon J, Koos R, Flohr TG, Schaller S, Gunther RW (2003) Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted examination protocol. Am J Roentgenol 181:533–538

    CAS  Google Scholar 

  25. Hong C, Bae KT, Pilgram TK, Suh J, Bradley D (2002) Coronary artery calcium measurement with multi-detector row CT: in vitro assessment of effect of radiation dose. Radiology 225:901–906

    Article  PubMed  CAS  Google Scholar 

  26. Jakobs TF, Wintersperger BJ, Herzog P, Flohr T, Suess C, Knez A, Reiser MF, Becker CR (2003) Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 13:1923–1930

    Article  PubMed  Google Scholar 

  27. Sediono W, Dossel O (2002) Elastomechanics of the ventricles: development of a phantom and results of simulation. Biomed Tech (Berl) 47(Suppl 1 Pt 1):243–245

    Article  Google Scholar 

  28. Timinger H, Krueger S, Borgert J et al (2004) Motion compensation for interventional navigation on 3D static roadmaps based on an affine model and gating. Phys Med Biol 49:719–732

    Article  PubMed  Google Scholar 

  29. Begemann PG, van Stevendaal U, Manzke R, Stork A, Weiss F, Nolte-Ernsting C, Grass M, Adam G (2005) Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT using a dynamic cardiac phantom. Eur Radiol 15:1015–1026

    Article  PubMed  CAS  Google Scholar 

  30. Grass M, Manzke R, Nielsen T, Koken P, Proksa R, Natanzon M, Shechter G (2003) Helical cardiac cone beam reconstruction using retrospective ECG gating. Phys Med Biol 48:3069–3084

    Article  PubMed  CAS  Google Scholar 

  31. Manzke R, Kohler T, Nielsen T, Hawkes D, Grass M (2004) Automatic phase determination for retrospectively gated cardiac CT. Med Phys 31:3345–3362

    Article  PubMed  CAS  Google Scholar 

  32. Manzke R, Grass M, Nielsen T, Shechter G, Hawkes D (2003) Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med Phys 30:3072–3080

    Article  PubMed  CAS  Google Scholar 

  33. Shechter G, Naveh G, Altmann A et al (2003) Cardiac image reconstruction on a 16-slice CT scanner using a retrospectively gated, multi-cycle 3D back projection algorithm. Proceedings of SPIE Medical Imaging Conference 5032:1820–1828

    Google Scholar 

  34. Horiguchi J, Shen Y, Akiyama Y, Hirai N, Sasaki K, Ishifuro M, Nakanishi T, Ito K (2005) Electron Beam CT Versus 16-MDCT on the variability of repeated coronary artery calcium measurements in a variable heart rate phantom. Am J Roentgenol 185:995–1000

    Article  Google Scholar 

  35. Horiguchi J, Shen Y, Akiyama Y, Hirai N, Sasaki K, Ishifuro M, Ito K (2006) Electron beam CT versus 16-slice spiral CT: how accurately can we measure coronary artery calcium volume? Eur Radiol 16:374–380

    Article  PubMed  Google Scholar 

  36. Hoffmann MH, Lessick J, Manzke R, Schmid FT, Gershin E, Boll DT, Rispler S, Aschoff AJ, Grass M (2006) Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience. Eur Radiol 16:365–373

    Article  PubMed  Google Scholar 

  37. Horiguchi J, Nakanishi T, Ito K (2001) Quantification of coronary artery calcium using multidetector CT and a retrospective ECG-gating reconstruction algorithm. Am J Roentgenol 177:1429–1435

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp G. C. Begemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begemann, P.G.C., van Stevendaal, U., Koester, R. et al. Evaluation of the influence of acquisition and reconstruction parameters for 16-row multidetector CT on coronary calcium scoring using a stationary and dynamic cardiac phantom. Eur Radiol 17, 1985–1994 (2007). https://doi.org/10.1007/s00330-006-0564-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0564-z

Keywords

Navigation