Skip to main content
Log in

How to set up and apply reference levels in fluoroscopy at a national level

  • Physics
  • Published:
European Radiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A nationwide survey was launched to investigate the use of fluoroscopy and establish national reference levels (RL) for dose-intensive procedures. The 2-year investigation covered five radiology and nine cardiology departments in public hospitals and private clinics, and focused on 12 examination types: 6 diagnostic and 6 interventional. A total of 1,000 examinations was registered. Information including the fluoroscopy time (T), the number of frames (N) and the dose-area product (DAP) was provided. The data set was used to establish the distributions of T, N and the DAP and the associated RL values. The examinations were pooled to improve the statistics. A wide variation in dose and image quality in fixed geometry was observed. As an example, the skin dose rate for abdominal examinations varied in the range of 10 to 45 mGy/min for comparable image quality. A wide variability was found for several types of examinations, mainly complex ones. DAP RLs of 210, 125, 80, 240, 440 and 110 Gy cm2 were established for lower limb and iliac angiography, cerebral angiography, coronary angiography, biliary drainage and stenting, cerebral embolization and PTCA, respectively. The RL values established are compared to the data published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aroua A, Burnand B, Decka I, Vader JP, Valley JF (2002) Nation-wide survey on radiation doses in diagnostic and interventional radiology in Switzerland in 1998. Health Phys 83(1):46–55

    Article  PubMed  CAS  Google Scholar 

  2. International Commission on Radiological Protection (2000) Avoidance of radiation injuries from medical interventional procedures. ICRP Publication 85

  3. European Union (1997) On health protection of individuals against the dangers of ionising radiation in relation to medical exposure, Council Directive 97/43/Euratom, Official J Eur Commun L 180:22–27

    Google Scholar 

  4. International Commission on Radiological Protection (2001) Diagnostic reference levels in medical imaging. ICRP Committee 3, (draft)

  5. European Commission (1999) Guidance on diagnostic reference levels (DRLs) for medical exposures. Radiat Protect 109

  6. Hart D, Hiller MC, Wall BF (2002) Doses to patients from medical X-ray examinations in the UK-2000 Review. Report NRPB-W14. National Radiological Protection Board, Didcot

  7. Holm LE, Leitz W (2002) The Swedish Radiation Protection Authority’s regulations and general advice on diagnostic standard doses and reference levels within medical X-ray diagnostics. SSI FS 2002:2 Statens Strålskyddsinstitut Stockholm

  8. Veit R, Bauer B (2003) Introduction of diagnostic reference levels into diagnostic radiology in Germany. Internal report. Federal Office for Radiological Protection, Salzgitter

  9. Marshall NW, Chapple CL, Kotre CJ (2000) Diagnostic reference levels in interventional radiology. Phys Med Biol 45:3833–3846

    Article  PubMed  CAS  Google Scholar 

  10. Van de Putte S, Verhaegen F, Taeymans Y, Thierens H (2000) Correlation of patient skin doses in cardiac interventional radiology with dose-area product. Br J Radiol 73:504–513

    PubMed  Google Scholar 

  11. Neofotistou V, Vano E, Padovani R, Kotre J, Dowling A, Toivonen M, Kottou S, Tsapaki V, Willis S, Bernardi G, Faulkner K (2003) Preliminary reference levels in interventional cardiology. Eur Radiol 13:2259–2263

    Article  PubMed  CAS  Google Scholar 

  12. Martin CJ (2004) A review of factors affecting patient doses for barium enemas and meals. Br J Radiol 77:864–868

    Article  PubMed  CAS  Google Scholar 

  13. Ben Salem D, Martin D, Aho LS, Walker PM, Lalande A, Brunotte F, Krause D, Ricolfi F (2004) Analysis of variation in delivered dose in diagnostic and therapeutic cerebral angiography. (in French). J Neuroradiol 31:379–383

    Article  PubMed  CAS  Google Scholar 

  14. Bor D, Sancak T, Olgar T, Elcim Y, Adanali A, Sanlidilek U, Akyar S (2004) Comparison of effective doses obtained from dose-area product and air kerma measurements in interventional radiology. Br J Radiol 77:315–322

    Article  PubMed  CAS  Google Scholar 

  15. Delichas MG, Psarrakos K, Giannoglou G, Molyvda-Athanasopoulou E, Hatziioannou K, Papanastassiou E (2005) Skin doses to patients undergoing coronary angiography in a Greek hospital. Radiat Prot Dosim 113(4):449–452

    Article  Google Scholar 

  16. Persliden J (2005) Patient and staff doses in interventional X-ray procedures in Sweden. Radiat Prot Dosim 114(1–3):150–157

    Article  Google Scholar 

  17. Brambilla M, Marano G, Dominietto M, Cotroneo AR, Carriero A (2004) Patient radiation doses and reference levels in interventional radiology Radiol Med 107:408–418

    PubMed  Google Scholar 

  18. Miller DL, Balter S, Cole PE, Lu HT, Schuler BA, Geisinger M, Berenstein A, Albert R, Georgia JD, Noonan PT, Cardella JF, St. George J, Russell EJ, Malisch TW, Vogelzang RL, Miller GL III, Anderson J (2003) Radiation doses in interventional radiology procedures: The RAD-IR study. Part I: overall measures of dose. J Vasc Interv Radiol 14:711–727

    PubMed  Google Scholar 

  19. Miller DL, Balter S, Cole PE, Lu HT, Berenstein A, Albert R, Schuler BA, Georgia JD, Noonan PT, Russell EJ, Malisch TW, Vogelzang RL, Geisinger M, Cardella JF, St George J, Miller GL III, Anderson J (2003) Radiation doses in interventional radiology procedures: The RAD-IR study. Part II: skin dose. J Vasc Interv Radiol 14:977–990

    PubMed  Google Scholar 

  20. Balter S, Schuler BA, Miller DL, Cole PE, Lu HT, Berenstein A, Albert R, Georgia JD, Noonan PT, Russell EJ, Malisch TW, Vogelzang RL, Geisinger M, Cardella JF, St. George J, Miller GL III, Anderson J (2004) Radiation doses in interventional radiology procedures: The RAD-IR study. Part III: dosimetric performance of the interventional fluoroscopy units. J Vasc Interv Radiol 15:919-926

    PubMed  Google Scholar 

  21. Davies AG, Cowen AR, Kengyelics SM, Moore J, Pepper C, Cowan C, Sivanathan MU (2006) X-ray dose reduction in fluoroscopically guided electrophysiology procedures. Pacing Clin Electrophysiol 29(3):262–271

    Article  PubMed  Google Scholar 

  22. Perisinakis K, Raissaki M, Damilakis J, Stratakis J, Neratzoulakis J, Gourtsoyiannis N (2006) Fluoroscopy-controlled voiding cystourethrography in infants and children: are the radiation risks trivial? Eur Radiol 16(4):846–851

    Article  PubMed  Google Scholar 

  23. Peterzol A, Quai E, Padovani R, Bernardi G, Kotre CJ, Dowling A (2005) Reference levels in PTCA as a function of procedure complexity. Radiat Prot Dosim 117(1–3):54–58

    CAS  Google Scholar 

  24. Dragusin O, Desmet W, Heidbuchel H, Padovani R, Bosmans H (2005) Radiation dose levels during interventional cardiology procedures in a tertiary care hospital. Radiat Prot Dosim 117(1–3):231–235

    CAS  Google Scholar 

  25. Goni H, Tsalafoutas IA, Tzortzis G, Pappas P, Bouzas N, Loulakas J, Georgiou A, Georgiou E, Yakoumakis EN (2005) Radiation doses to patients from digital substraction angiography. Radiat Prot Dosim 117(1–3):251–255

    CAS  Google Scholar 

  26. Geijer H, Persliden J (2004) Radiation exposure and patient experience during percutaneous coronary intervention using radial and femoral artery access. Eur Radiol 14(9):1674–1680

    Article  PubMed  Google Scholar 

  27. Stratakis J, Damilakis J, Hatzidakis A, Perisinakis K, Gourtsoyiannis N (2006) Radiation dose and risk from fluoroscopically guided percutaneous transhepatic biliary procedures. J Vasc Interv Radiol 17(1):77–84

    Article  PubMed  Google Scholar 

  28. McFadden SL, Mooney RB, Shepherd PH (2002) X-ray dose and associated risks from radiofrequency catheter ablation procedures. Br J Radiol 75:253–265

    PubMed  CAS  Google Scholar 

  29. Chu RY, Thomas G, Maqbool F (2006) Skin entrance radiation dose in an interventional radiology procedure. Health Physics 91(1):41–46

    Article  PubMed  CAS  Google Scholar 

  30. Hansson B, Karambatsakidou A (2000) Relationships between entrance skin dose, effective dose and dose area product for patients in diagnostic and interventional procedures. Radiat Prot Dosim 90(1–2):141–144

    Google Scholar 

  31. Karambatsakidou A, Tornvall P, Saleh N, Chouliaras T, Löfberg P-O, Fransson A (2005) Skin dose alarm levels in cardiac angiography procedures: is a single DAP value sufficient? Br J Radiol 78:803–809

    Article  PubMed  CAS  Google Scholar 

  32. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M (2006) Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. Am J Roentgenol 186(3):774–778

    Article  Google Scholar 

  33. Vano E, Gonzalez L, Ten JE, Fernandez JM, Guibelalde E, Macaya C (2001) Skin dose and dose-area product values for interventional cardiology procedures. Br J Radiol 74:48–55

    PubMed  CAS  Google Scholar 

  34. Office fédéral de la santé publique. Division de radioprotection. Niveaux de référence diagnostiques (NRD) pour les examens de radiographie. Directive R-08-04. Etablie le 7 avril 2004. Accessible en ligne sur: http://www.bag.admin.ch/strahlen/lois/pdf/R-08-04-mf.pdf

  35. Accessible on: http://www.bag.admin.ch/strahlen/lois/pdf/NRDCalc1.2.xls

  36. Aroua A, Decka I, Burnand B, Vader JP, Valley JF (2002) Dosimetric aspects of a national survey of diagnostic and interventional radiology in Switzerland. Med Phys 29(10):2247–2259

    Article  PubMed  CAS  Google Scholar 

  37. Aroua A, Besançon A, Buchillier-Decka I, Trueb P, Valley JF, Verdun FR, Zeller W (2004) Adult reference levels in diagnostic and interventional radiology for temporary use in Switzerland. Radiat Prot Dosim 111(3):289–295

    Article  CAS  Google Scholar 

  38. Llorca AL, Guibelalde E, Vañó N, Ruiz MJ (1993) Analysis of image quality parameters using a combination of an ANSI type phantom and the Leeds TOR(CDR) Test object in simulations of simple examinations. Radiat Prot Dosim 49:47–49

    Google Scholar 

  39. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51(5):341–352

    Article  Google Scholar 

  40. Kock M, Adriaensen M, Pattynama P, Van Sambeek M, Van Urk H, Stijnen T, Hunink M (2005) DSA versus multi-detector row CT angiography in peripheral arterial disease: randomized controlled trial. Radiology 237:727–737

    Article  PubMed  Google Scholar 

  41. Fraioli F, Catalano C, Napoli A, Francone M, Venditti F, Danti M, Pediconi F, Passariello R (2006) Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA. Eur Radiol 16(1):137–146

    Article  PubMed  Google Scholar 

  42. Maeder M, Verdun FR, Stauffer JC, Ammann P, Rickli H (2005) Radiation exposure and radiation protection in interventional cardiology. Kardiovaskuläre Medizin 8:124–132

    Google Scholar 

  43. Prieto C, Vano E, Fernandez JM, Galvan C, Sabate M, Gonzalez L, Martinez D (2006) Six years experience in intracoronary brachytherapy procedures: patient doses from fluoroscopy. Br J Radiol DOI 10.1259/bjr/75766147. Published online before print June 22

Download references

Acknowledgments

This research project was funded by the Swiss Federal Office of Public Health (contract no. 99.000.729). The authors are grateful to all the radiologists, cardiologists, medical physicists and radiographers who collaborated with us or provided assistance in the participating hospitals and clinics during this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aroua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aroua, A., Rickli, H., Stauffer, JC. et al. How to set up and apply reference levels in fluoroscopy at a national level. Eur Radiol 17, 1621–1633 (2007). https://doi.org/10.1007/s00330-006-0463-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0463-3

Keywords

Navigation