Skip to main content
Log in

MR imaging of the cervical spine: assessment of image quality with parallel imaging compared to non-accelerated MR measurements

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To compare the quality of cervical spine MR images obtained by parallel imaging [generalized autocalibrating partially parallel acquisition (GRAPPA)] with those of non-accelerated imaging, we conducted both phantom studies and examinations of ten volunteers at 1.5Tesla with a dedicated 12-element coil system and a head-spine-neck coil combination. Acquisitions included axial T2-weighted (T2w) images with both methods, and sagittal T2w and T1w images in vivo with the latter coil combination. Non-accelerated MRI with two averages and GRAPPA (acceleration factor 2) with two averages (GRAPPA/2AV, time reduction of approximately 50%) and four averages (GRAPPA/4AV) were compared. In the phantom, the signal-to-noise ratio of the GRAPPA/2AV was lower than that of the other two settings. In vivo, the image inhomogeneity (non-uniformity, NU) was significantly higher in T2w GRAPPA/2AV than in both other settings, and in T1w GRAPPA/2AV compared to GRAPPA/4AV. Subjectively, the delineation of anatomical structures was sufficient in all sequences. Only the spinal cord was considered to be better delineable on the non-accelerated T1w sequence compared to GRAPPA/2AV. In part, GRAPPA/4AV performed better than the other settings. The subjective image noise was lowest with GRAPPA/4AV. In cervical spine MRI, the examination time can be reduced by nearly 42% with GRAPPA, while preserving sufficient image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603

    Article  PubMed  CAS  Google Scholar 

  2. Griswold MA, Jakob PM, Nittka M et al (2000) Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med 44(4):602–609. DOI 10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  3. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210. DOI 10.1002/mrm.10171

    Article  PubMed  Google Scholar 

  4. Jakob PM, Griswold MA, Edelman RR et al (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. Magma 7(1):42–54. DOI 10.1016/S1352-8661(98)00015-5

    Article  PubMed  CAS  Google Scholar 

  5. Katscher U, Börnert P, Leussler C et al (2003) Transmit SENSE. Magn Reson Med 49(1):144–150. DOI 10.1002/mrm.10353

    Article  PubMed  Google Scholar 

  6. Kurihara Y, Yakushiji YK, Tani I et al (2002) Coil sensitivity encoding in MR imaging: advantages and disadvantages in clinical practice. AJR Am J Roentgenol 178(5):1087–1091

    PubMed  Google Scholar 

  7. Kyriakos WE, Panych LP, Kacher DF et al (2000) Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP). Magn Reson Med 44(2):301–308. DOI 10.1002/1522-2594(200008)44:2<301::AID-MRM18>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  8. Madore B, Pelc NJ (2001) SMASH and SENSE: experimental and numerical comparisons. Magn Reson Med 45(6):1103–1111. DOI 10.1002/mrm.1145

    Article  PubMed  CAS  Google Scholar 

  9. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5): 952–962. DOI 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  10. Sodickson DK, Griswold MA, Jakob PM et al (1999) Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med 41(5): 1009–1022. DOI 10.1002/(SICI)1522-2594(199905)41:5<1009::AID-MRM21>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  11. van den Brink JS, Watanabbe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46(1): 3–27. DOI 10.1016/S0720-048X(02)00333-9

    Article  PubMed  Google Scholar 

  12. Weiger M, Pruessmann KP, Boesiger P (2002) 2D SENSE for faster 3D MRI. Magma 14(1):10–19. DOI 10.1016/S1352-8661(01)00152-1

    PubMed  Google Scholar 

  13. Dietrich O, Nikolaou K, Wintersperger BJ et al (2002) iPAT: Applications for fast and cardiovaskular MRI. Electromedica 70(2):133–146

    Google Scholar 

  14. Heidemann RM, Özsarlak Ö, Parizel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13(10):2323–2337. DOI 10.1007/s00330-003-1992-7

    Article  PubMed  Google Scholar 

  15. Sodickson DK, McKenzie CA, Ohliger MA et al (2002) Recent advances in image reconstruction, coil sensitivity calibration, and coil array design for SMASH and generalized parallel MRI. Magma 13(3):158–163. DOI 10.1016/S1352-8661(01)00144-2

    PubMed  Google Scholar 

  16. Firbank MJ, Coulthard A, Harrison RM et al (1999) A comparison of two methods for measuring the signal to noise ratio on MR images. Phys Med Biol 44(12):N261–N264. DOI 10.1088/0031-9155/44/12/403

    Article  PubMed  CAS  Google Scholar 

  17. Li T, Mirowitz SA (2002) Comparative study of fast MR imaging: quantitative analysis on image quality and efficiency among various time frames and contrast behaviours. Magn Reson Imaging 20(6):471–478. DOI 10.1016/S0730-725X(02)00527-1

    Article  PubMed  Google Scholar 

  18. Wicks DA, Barker GJ, Tofts PS (1993) Correction of intensity nonuniformity in MR images of any orientation. Magn Reson Imaging 11(2):183–196. DOI 10.1016/0730-725X(93)90023-7

    Article  PubMed  CAS  Google Scholar 

  19. Romaneehsen B, Oberholzer K, Müller LP et al (2003) Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) -initial experiences. Rofo 175(9):1193–1197. DOI 10.1055/s-2003-41926

    PubMed  CAS  Google Scholar 

  20. Ross JS, Ruggieri P, Tkach J et al (1993) Lumbar degenerative disk disease: prospective comparison of conventional T2-weighted spin-echo imaging and T2-weighted rapid acquisition relaxation-enhanced imaging. AJNR 14(5):1215–1223

    PubMed  CAS  Google Scholar 

  21. Schoonjans F (1993–1998) MedCalc, in Version 5.00.020 for Windows 95/98/NT

  22. Ruel L, Brugieres P, Luciani A et al (2004) Comparison of in vitro and in vivo MRI of the spine using parallel imaging. AJR Am J Roentgenol 182(3):749–755

    PubMed  Google Scholar 

  23. Dietrich O, Reeder SB, Reiser MF, Schoenberg SO (2005) Influence of parallel imaging and other reconstruction techniques on the measurement of signal-to-noise ratios. Proc Intern Soc Magn Reson Med (ISMRM) 13:158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris-M. Noebauer-Huhmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noebauer-Huhmann, IM., Glaser, C., Dietrich, O. et al. MR imaging of the cervical spine: assessment of image quality with parallel imaging compared to non-accelerated MR measurements. Eur Radiol 17, 1147–1155 (2007). https://doi.org/10.1007/s00330-006-0411-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0411-2

Keywords

Navigation