Skip to main content
Log in

Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [15O]H2O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Derdeyn CP, Grubb RL Jr, Powers WJ (1999) Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology 53:251–259

    PubMed  CAS  Google Scholar 

  2. Ringelstein EB, Weiller C, Weckesser M, Weckesser S (1994) Cerebral vasomotor reactivity is significantly reduced in low-flow as compared to thromboembolic infarctions: the key role of the circle of Willis. J Neurol Sci 121:103–109

    Article  PubMed  CAS  Google Scholar 

  3. Hirano T, Minematsu K, Hasegawa Y, Tanaka Y, Hayashida K, Yamaguchi T (1994) Acetazolamide reactivity on 121 I-IMP single photon emission computed tomography in patients with major cerebral artery occlusive disease: correlation with positron emission tomography parameters. J Cereb Blood Flow Metab 16:763–770

    Google Scholar 

  4. Knop J, Thie A, Fuchs C, Siepmann G, Zeumer H (1992) 99mTc-HMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease. Stroke 223:1733–1742

    Google Scholar 

  5. Bickler PE, Litt L, Banville DL, Severinghaus JW (1988) Effects of acetazolamide on cerebral acid-base balance. J Appl Physiol 422–427

  6. Nabavi DG, Cenic A, Craen RA, Gelb AW, Bennett JD, Kozak R, Lee TY (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213:141–149

    PubMed  CAS  Google Scholar 

  7. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473

    Article  PubMed  CAS  Google Scholar 

  8. Neumann-Haefelin T, Wittsack HJ, Fink GR et al (2000) Diffusion- and perfusion-weighted MRI: influence of severe carotid artery stenosis on the DWI/PWI mismatch in acute stroke. Stroke 31:1311–1317

    PubMed  CAS  Google Scholar 

  9. Yamada K, Wu O, Gonzalez RG et al (2002) Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 33:87–94

    Article  PubMed  Google Scholar 

  10. Holl K, Nemati NM, Haubitz B, Mejewski A, Gaab MR, Becker H, Dietz H (1992) Xenon-CT und Bestimmung der zerebrovaskulären Reserve mit Acetazolamid (Diamox) In: Becker H, Gaab MR (eds) Hirndurchblutung und zerebrovaskuläre Reservekapazität. Urban & Schwarzenberg, München

    Google Scholar 

  11. Matzke KH, Meyer GJ, Hundeshagen H (1993) An advanced system for the administration of 15O-water. J Labelled Compd Radiopharm 32:459–460

    Google Scholar 

  12. Van den Hoff J, Burchert M, Müller-Schauenburg W, Meyer GJ, Hundeshagen H (1993) Accurate local blood flow measurement with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 34:1770–1777

    PubMed  Google Scholar 

  13. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  14. Gillard JH, Minhas PS, Hayball MP et al (2000) Assessment of quantitative computed tomographic cerebral perfusion imaging with H2 15O positron emission tomography. Neurol Res 22:457–464

    PubMed  CAS  Google Scholar 

  15. Huisman TA, Sorensen AG (2004) Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol 14:59–72

    Article  PubMed  Google Scholar 

  16. Uematsu H, Maeda M (2006) Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular-permeability. Eur Radiol 16:180–186

    Article  PubMed  Google Scholar 

  17. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, Miyasaka K (2003) Quantitative cerebral flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2 15O positron emission tomography. AJNR Am J Neuroradiol 24:419–426

    PubMed  Google Scholar 

  18. Yamamuchi H, Fukuyama H, Nagahama Y, Katsumi Y, Okazawa H (1998) Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study. Stroke 29:98–103

    PubMed  Google Scholar 

  19. Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236

    Article  PubMed  Google Scholar 

  20. Bisdas S, Donnerstag F, Ahl B, Bohrer I, Weissenborn K, Becker H (2004) Comparison of perfusion computed tomography with diffusion-weighted magnetic resonance imaging in hyperacute ischemic stroke. J Comput Assist Tomogr 28:747–755

    Article  PubMed  Google Scholar 

  21. Lythgoe DJ, Østergaard L, Williams SCR, Cluckie A, Buxton-Thomas M, Simmons A, Markus HS (2000) Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 18:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intavascular tracer bolus passages, II: experimental comparison and preliminary results. Magn Reson Med 36:726–736

    Article  PubMed  Google Scholar 

  23. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: a theoretical analysis. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  24. Hofmeijer J, Klijn CMJ, Kappelle LJ, van Huffelen AC, van Gijn J (2002) Collateral circulation via the ophthalmic artery or leptomeningeal vessels is associated with impaired cerebral vasoreactivity in patients with symptomatic carotid artery occlusion. Cerebrovasc Dis 14:22–26

    Article  PubMed  CAS  Google Scholar 

  25. Ozgur HT, Kent Walsh T, Masaryk A et al (2001) Correlation of cerebrovascular reserve as measured by acetazolamide-challenged SPECT with angiographic flow patterns and intra- or extracranial arterial stenosis. AJNR Am J Neuroradiol 22:928–936

    PubMed  CAS  Google Scholar 

  26. Kikuchi K, Murase K, Miki H, Kikuchi T, Sugawara Y, Mochizuki T, Ikezoe J, Ohue S (2001) Measurement of cerebral hemodynamics with perfusion-weighted MR imaging: comparison with pre- and post-acetazolamide 133Xe-SPECT in occlusive carotid disease. AJNR Am J Neuroradiol 22:248–254

    PubMed  CAS  Google Scholar 

  27. Greitz T (1956) A radiologic study of the brain circulation by rapid serial angiography of the carotid artery. Acta Radiol Suppl 140:1–123

    PubMed  Google Scholar 

  28. Yamamoto S, Watanabe M, Uematsu T, Takasawa K, Nukata M, Kinoshita N (2004) Correlation of angiographic circulation time and cerebrovascular reserve by acetazolamide-challenged single photon emission CT. AJNR Am J Neuroradiol 25:242–247

    PubMed  Google Scholar 

  29. Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K, Mowinckel P (1994) Simultaneous assessment of vasoreactivity using transcranial Doppler ultrasound and cerebral blood flow in healthy subjects. J Cereb Blood Flow Metab 14:974–981

    PubMed  CAS  Google Scholar 

  30. Karnik R, Valentin A, Winkler WB, Khaffaf N, Donath P, Slany J (1996) Sex-related differences in acetazolamide-induced cerebral vasomotor reactivity. Stroke 27:56–58

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Bisdas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisdas, S., Nemitz, O., Berding, G. et al. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease. Eur Radiol 16, 2220–2228 (2006). https://doi.org/10.1007/s00330-006-0209-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0209-2

Keywords

Navigation