Skip to main content
Log in

Non-invasive coronary angiography with 16-slice spiral computed tomography: image quality in patients with high heart rates

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess segment image quality at high heart rates using 16-slice computed tomography and differential reconstruction for major coronary vessels. According to the following protocol, 16-slice CT coronary angiography in 46 patients with a mean heart rate of 86.3±11.8 was reconstructed. At three transverse planes, preview series were obtained and motion artifacts evaluated in 5% increments from 0-95% within the cardiac cycle. Relying on image quality in the previews, reconstructions were performed at three z-positions for each patient. Segment image quality was assessed in terms of artifacts and visibility. The effects of heart rate and trigger delay on image quality were analyzed. Optimal image quality was achieved at 25 to 35% of the cardiac cycle for the left circumflex (CX) and right coronary artery (RCA) or 30 to 40% for the left main (LM) and left anterior descending artery (LAD). Sixteen-slice CT and differential reconstruction produced good image quality with a low percentage of motion-degraded proximal and middle segments (8.8%). Grades were 1.5 for the LM, 1.9 for the LAD, 2.0 for the CX and 2.3 for the RCA. At high heart rates, good image quality of the coronary arteries is achieved by 16-slice CT and a sophisticated reconstruction strategy at peak to late systole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rumberger JA (2002) Noninvasive coronary angiography using computed tomography: ready to kick it up another notch? Circulation 106(16):2036-2038

    Article  PubMed  Google Scholar 

  2. Schoepf UJ et al (2004) CT of coronary artery disease. Radiology 232(1):18-37

    Article  PubMed  Google Scholar 

  3. Kim WY et al (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345(26):1863-1869

    Article  PubMed  CAS  Google Scholar 

  4. Lu B et al (2002) Image quality of three-dimensional electron beam coronary angiography. J Comput Assist Tomogr 26(2):202-209

    Article  PubMed  Google Scholar 

  5. Schroeder S et al (2002) Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin Imaging 26(2):106-111

    Article  PubMed  Google Scholar 

  6. Flohr TG et al (2003) Advances in cardiac imaging with 16-section CT systems. Acad Radiol 10(4):386-401

    Article  PubMed  Google Scholar 

  7. Kopp AF et al (2003) MDCT: cardiology indications. Eur Radiol 13(Suppl 5):M102-M115

    PubMed  Google Scholar 

  8. Nieman K et al (2002) Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol 89(8):913-918

    Article  PubMed  Google Scholar 

  9. Nieman K et al (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106(16):2051-2054

    Article  PubMed  Google Scholar 

  10. Ropers D et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107(5):664-666

    Article  PubMed  Google Scholar 

  11. Cademartiri F et al (2005) Diagnostic accuracy of multislice computed tomography coronary angiography is improved at low heart rates. Int J Cardiovasc Imaging:1-5

  12. Hoffmann MH et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234(1):86-97

    Article  PubMed  Google Scholar 

  13. Kuettner A et al (2004) Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol 44(6):1230-1237

    PubMed  Google Scholar 

  14. Shim SS, Kim Y, Lim SM (2005) Improvement of image quality with beta-blocker premedication on ECG-gated 16-MDCT coronary angiography. AJR Am J Roentgenol 184(2):649-654

    PubMed  Google Scholar 

  15. Zhang SZ et al (2005) Evaluation of computed tomography coronary angiography in patients with a high heart rate using 16-slice spiral computed tomography with 0.37-s gantry rotation time. Eur Radiol 15(6):1105-1109

    Article  PubMed  Google Scholar 

  16. Bashore TM et al (2001) American College of Cardiology/Society for cardiac angiography and interventions clinical expert consensus document on cardiac catheterization laboratory standards. A report of the American College of Cardiology Task Force on clinical expert consensus documents. J Am Coll Cardiol 37(8):2170-2214

    Article  PubMed  CAS  Google Scholar 

  17. Vogl TJ et al (2002) Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. Radiology 223(1):212-220

    Article  PubMed  Google Scholar 

  18. Kopp AF et al (2002) Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients. Eur Heart J 23(21):1714-1725

    PubMed  CAS  Google Scholar 

  19. Knez A et al (2001) Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol 88(10):1191-1194

    Article  PubMed  CAS  Google Scholar 

  20. Nieman K et al (2001) Coronary angiography with multi-slice computed tomography. Lancet 357(9256):599-603

    Article  PubMed  CAS  Google Scholar 

  21. Achenbach S et al (2001) Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 103(21):2535-2538

    PubMed  CAS  Google Scholar 

  22. Hong C et al (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220(3):712-717

    Article  PubMed  CAS  Google Scholar 

  23. Nieman K et al (2002) Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 88(5):470-474

    Article  PubMed  CAS  Google Scholar 

  24. Heuschmid M et al (2005) ECG-gated 16-MDCT of the coronary arteries: assessment of image quality and accuracy in detecting stenoses. AJR Am J Roentgenol 184(5):1413-1419

    PubMed  Google Scholar 

  25. Hamoir XL et al (2005) Coronary arteries: assessment of image quality and optimal reconstruction window in retrospective ECG-gated multislice CT at 375-ms gantry rotation time. Eur Radiol 15(2):296-304

    Article  PubMed  Google Scholar 

  26. Kopp AF et al (2002) Multidetector-row CT cardiac imaging with 4 and 16 slices for coronary CTA and imaging of atherosclerotic plaques. Eur Radiol 12(Suppl 2):S17-S24

    Article  PubMed  Google Scholar 

  27. Giesler T et al (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179(4):911-916

    PubMed  Google Scholar 

  28. Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8(3):568-576

    Article  PubMed  CAS  Google Scholar 

  29. Achenbach S et al (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216(2):457-463

    PubMed  CAS  Google Scholar 

  30. Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213(3):751-758

    PubMed  CAS  Google Scholar 

  31. Potel MJ et al (1983) Methods for evaluating cardiac wall motion in three dimensions using bifurcation points of the coronary arterial tree. Invest Radiol 18(1):47-57

    Article  PubMed  CAS  Google Scholar 

  32. Kopp AF et al (2004) Multislice CT in cardiac and coronary angiography. Br J Radiol 77(Spec No 1):S87-S97

    Article  PubMed  Google Scholar 

  33. Pannu HK et al (2003) Current concepts in multi-detector row CT evaluation of the coronary arteries: principles, techniques, and anatomy. Radiographics 23 Spec No:S111-S125

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Brodoefel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodoefel, H., Reimann, A., Heuschmid, M. et al. Non-invasive coronary angiography with 16-slice spiral computed tomography: image quality in patients with high heart rates. Eur Radiol 16, 1434–1441 (2006). https://doi.org/10.1007/s00330-006-0155-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0155-z

Keywords

Navigation