Skip to main content
Log in

Gray-scale three-dimensional sonography of thyroid nodules: feasibility of the method and preliminary studies

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of the study was differential evaluation of new and classical sonographic features of benign thyroid nodules and thyroid cancer with three-dimensional gray-scale sonography and evaluation of the effectiveness of the thin-slice surface rendered images in comparison with multiplanar reformation (MPR) presentation. Fifty-four thyroid nodules were interactively evaluated with thin-slice smooth surface rendering: shape in the c-plane (parallel to the probe) and evaluation of echogenicity, margins and calcification/microcalcification-like echogenic foci in the a-plane (plane of the probe). Evaluation of the level of agreement in readers’ interpretation and between sonographic techniques was performed using the κ statistic. Surface rendering permitted visualization of the shape of the nodule in the c-plane in all cases, in contrast to only up to 48% of cases in MPR evaluation. Lobulated nodule shape in the c-plane was 82–100% sensitive and 47–53% specific in diagnosis of carcinoma. Surface rendered images showed more calcification/microcalcification-like echogenic foci than MPR ones. The level of agreement between the observers in the evaluation of features of thyroid nodules and the agreement between features of thyroid nodules on MPR and surface-rendered images showed at least moderate reproducibility (κ≥0.41). Three-dimensional thin-slice surface rendering sonography appears to be a feasible and effective method for thyroid nodule evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rankin RN, Fenster A, Downey DB, Munk PL, Levin MF, Vellet AD (1993) Three-dimensional sonographic reconstruction: techniques and diagnostic applications. Am J Roentgenol 161:695–702

    Google Scholar 

  2. Downey DB, Fenster A, Williams J (2000) Clinical utility of three-dimensional US. Radiographics 20:559–571

    PubMed  Google Scholar 

  3. Slapa RZ, Kasperlik-Zaluska AA, Polanski JA, Borowicz K, Serafin-Krol M, Jakubowski W (2004) Three-dimensional sonography in diagnosis of retroperitoneal hemorrhage from adrenocortical carcinoma. J Ultrasound Med 23:1369–1373

    PubMed  Google Scholar 

  4. Schlogl S, Werner E, Lassmann M, Terekhova J, Muffert S, Seybold S, Reiners C (2001) The use of three-dimensonal ultrasound for thyroid volumetry. Thyroid 11:569–574

    Article  PubMed  Google Scholar 

  5. Ng E, Chen T, Lam R, Sin D, Ying M (2004) Three-dimensional ultrasound measurement of thyroid volume in asymptomatic male Chinese. Ultrasound Med Biol 30:1427–1433

    Article  PubMed  Google Scholar 

  6. Lyshchik A, Drozd V, Schloegl S, Reiners C (2004) Three-dimensional ultrasonography for volume measurement of thyroid nodules in children. J Ultrasound Med 23:247–254

    PubMed  Google Scholar 

  7. Lyshchik A, Drozd V, Reiners C (2004) Accuracy of three-dimensional ultrasound for thyroid volume measurement in children and adolescents. Thyroid 14:113–120

    Article  PubMed  Google Scholar 

  8. Lyshchik A, Drozd V, Demidchik Y, Reiners C (2005) Diagnosis of thyroid cancer in children: value of gray-scale and power doppler US. Radiology 235:604–613

    PubMed  Google Scholar 

  9. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RB (2003) Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med 22:1083–1090

    PubMed  Google Scholar 

  10. Papini E, Gugliemi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, Panunzi C, Rinaldi R, Toscano V, Pacella CM (2002) Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 87:1941–1946

    Article  PubMed  Google Scholar 

  11. Singer PA, Cooper DS, Daniels GH, Ladenson PW, Greenspan FS, Levy EG, Braverman LE, Clark OH, McDougall IR, Ain KV, Dorfman SG (1996) Treatment guidelines for patients with thyroid nodules and well-differentiated thyroid cancer. American Thyroid Association. Arch Intern Med 156:2165–2172

    Article  PubMed  Google Scholar 

  12. Feld S (1996) AACE clinical practice guidelines for the diagnosis and management of thyroid nodules. Endocrine practice 2:80–84

    Google Scholar 

  13. Hegedus L, Bonnema SJ, Bennedbak FN (2003) Management of simple nodular goiter: current status and future perspectives. Endocr Rev 24:102–132

    Article  PubMed  Google Scholar 

  14. Kim E-K, Park CS, Chung WY (2002) New sonograpic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am J Roentgenol 178:687–691

    Google Scholar 

  15. Iannuccilli JD, Cronan JJ, Monchik JM (2004) Risk for malignancy of thyroid nodules as assessed by sonographic critria. The need for biopsy. J Ultrasound Med 23:1455–1464

    PubMed  Google Scholar 

  16. Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E (2003) Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules. J Ultrasound Med 22:127–131

    PubMed  Google Scholar 

  17. Hegedus L (2004) The thyroid nodule. N Engl J Med 351:1764–1771

    Article  PubMed  Google Scholar 

  18. Kraimps JL, Bouin-Pineau MH, Mathonnet M, De Calan L, Ronceray J, Visset J, Marechaud R, Barbier J (2000) Multicentre study of thyroid nodules in patients with Graves’ disease. Br J Surg 87:1111–1113

    Article  PubMed  Google Scholar 

  19. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    PubMed  Google Scholar 

  20. Rosner B (2000) Fundamentals of biostatistics. Duxbury Press, Florence (Ky.)

    Google Scholar 

  21. Gandolfi PP, Frisina A, Raffa M, Renda F, Rocchetti O, Ruggeri C, Tombolini A (2004) The incidence of thyroid carcinoma in multinodular goiter: retrospective analysis. Acta Biomed Ateneo Parmense 75:114–117

    PubMed  Google Scholar 

  22. Falkensammer P. Ultrasound technology update. Volume contrast imaging (VCI). GE Medical Systems Kretz Ultrasound materials

  23. Kim SH, Lee MJ, Lee KH, Kim YJ, An SK, Han CJ, Han JK, Choi BI (2004) Four-dimensional volume contrast ultrasound imaging of the gallbladder compared with tissue harmonic imaging: preliminary experience. Eur Radiol 14:1657–1664

    PubMed  Google Scholar 

  24. Meyberg-Solomayer GC, Kraemer B, Bergmann A, Kraemer E, Krainick U, Wallwiener D, Solomayer EF (2004) Does 3-D sonography bring any advantage to noninvasive breast diagnostics? Ultrasound Med Biol 30:583–589

    Article  PubMed  Google Scholar 

  25. Huang SF, Chang RF, Chen DR, Moon WK (2004) Characterization of spiculation on ultrasound lesions. IEEE Trans Med Imaging 23:111–121

    Article  PubMed  Google Scholar 

  26. Khati N, Adamson T, Johnson K, Hill MC (2003) Ultrasound of the thyroid and parathyroid glands. Ultrasound Q 19:162–176

    Article  PubMed  Google Scholar 

  27. Wolf G, Aigner RM, Schaffler G, Schwarz T, Krippl P (2003) Pathology results in [18F] fluorodeoxyglucose positron emission tomography of the thyroid gland. Nucl Med Commun 24:1225–1230

    Article  PubMed  Google Scholar 

  28. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK (2005) 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope 115:1074–1078

    Article  PubMed  Google Scholar 

  29. Sharma R, Mondal A, Shankar LR, Sahoo M, Bhatnagar P, Sawroop K, Chopra MK, Kashyap R (2004) Differentiation of malignant and benign solitary thyroid nodules using 30- and 120-minute tc-99m MIBI scans. Clin Nucl Med 29:534–537

    Article  PubMed  Google Scholar 

  30. Kresnik E, Gallowitsch HJ, Mikosch P, Stettner H, Igerc I, Gomez I, Kumnig G, Lind P (2003) Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery 133:294–299

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the State Committee for Scientific Research (Komitet Badan Naukowych) grant 3 P05B 100 23 in years 2002–2005. We thank the following people for their contributions in patient referral and verification: Malgorzata Gietka-Czernel MD, Helena Jastrzebska MD, Ireneusz Kozicki MD, Elzbieta Stachlewska-Nasfeter MD. We thank Mr Michael Haizinger (GE Healthcare Ultrasound) for information on the technical aspects of surface rendering. We thank John Gittins PhD (Great Britain) for editing and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Z. Slapa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slapa, R.Z., Slowinska-Srzednicka, J., Szopinski, K.T. et al. Gray-scale three-dimensional sonography of thyroid nodules: feasibility of the method and preliminary studies. Eur Radiol 16, 428–436 (2006). https://doi.org/10.1007/s00330-005-2903-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2903-x

Keywords

Navigation