Skip to main content
Log in

Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Coronary magnetic resonance (MR) imaging has dramatically emerged over the last decade. Technical improvements have enabled reliable visualization of the proximal and midportion of the coronary artery tree for exclusion of significant coronary artery disease. However, current technical developments focus also on direct visualization of the diseased coronary vessel wall and imaging of coronary plaque because plaques without stenoses are typically more vulnerable with higher risk of plaque rupture. Plaque rupture with subsequent thrombosis and vessel occlusion is the main cause of myocardial infarction. Very recently, the first success of molecular imaging in the coronary arteries has been demonstrated using a fibrin-specific contrast agent for selective visualization of coronary thrombosis. This demonstrates in general the high potential of molecular MR imaging in the field of coronary artery disease. In this review, we will address recent technical advances in coronary MR imaging, including visualization of the lumen and the vessel wall and molecular imaging of coronary arteriothrombosis. First results of these new approaches will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams DF (1982) How safe is the coronary angiogram? Cardiovasc Intervent Radiol 5:168–173

    PubMed  Google Scholar 

  2. Johnson LW, Lozner EC, Johnson S, Krone R, Pichard AD, Vetrovec GW, Noto TJ (1989) Coronary arteriography 1984–1987: a report of the Registry of the Society for Cardiac Angiography and Interventions. I. Results and complications. Cathet Cardiovasc Diagn 17:5–10

    PubMed  Google Scholar 

  3. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    PubMed  Google Scholar 

  4. Ward MR, Pasterkamp G, Yeung AC, Borst C (2000) Arterial remodeling. Mechanisms and clinical implications. Circulation 102:1186–1191

    PubMed  Google Scholar 

  5. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    PubMed  Google Scholar 

  6. Rentrop KP (2000) Thrombi in acute coronary syndromes: revisited and revised. Circulation 101:1619–1626

    PubMed  Google Scholar 

  7. Ojio S, Takatsu H, Tanaka T, Ueno K, Yokoya K, Matsubara T, Suzuki T, Watanabe S, Morita N, Kawasaki M, Nagano T, Nishio I, Sakai K, Nishigaki K, Takemura G, Noda T, Minatoguchi S, Fujiwara H (2000) Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans: coronary angiographic findings within 1 week before the onset of infarction. Circulation 102:2063–2069

    PubMed  Google Scholar 

  8. Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94:2013–2020

    PubMed  Google Scholar 

  9. Rittersma SZ, van der Wal AC, Koch KT, Piek JJ, Henriques JP, Mulder KJ, Ploegmakers JP, Meesterman M, de Winter RJ (2005) Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation 111:1160–1165 (Epub 2005 Feb 21)

    Article  PubMed  Google Scholar 

  10. Libby P (2005) Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques. J Am Coll Cardiol 45:1600–1602

    Article  PubMed  Google Scholar 

  11. Casscells W, Naghavi M, Willerson JT (2003) Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 107:2072–2075

    Article  PubMed  Google Scholar 

  12. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    Article  PubMed  Google Scholar 

  13. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, Aguinaldo JG, Badimon JJ, Sharma SK (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510

    PubMed  Google Scholar 

  14. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587

    PubMed  Google Scholar 

  15. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106:296–299

    Article  PubMed  Google Scholar 

  16. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  Google Scholar 

  17. Botnar R, Buecker A, Wiethoff AJ, Parsons EC Jr, Katoh M, Katsimaglis G, Weisskoff RM, Lauffer RB, Graham PB, Gunther RW, Manning WJ, Spuentrup E (2004) In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 110:1463–1466

    Article  PubMed  Google Scholar 

  18. Spuentrup E, Buecker A, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar RM, Weisskoff RM, Graham PB, Manning WJ, Gunther RW (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 22:1377–1382

    Article  Google Scholar 

  19. Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP (1987) MR imaging of the aortic root and proximal coronary arteries. Am J Roentgenol 148:665–670

    Google Scholar 

  20. Manning WJ, Li W, Edelman RR (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328:828–832

    Article  PubMed  Google Scholar 

  21. Flamm SD, Muthupillai R (2004) Coronary artery magnetic resonance angiography. J Magn Reson Imaging 19:686–709

    Article  PubMed  Google Scholar 

  22. Holland AE, Goldfarb JW, Edelman RR (1998) Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology 209:483–489

    PubMed  Google Scholar 

  23. Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212:579–587

    PubMed  Google Scholar 

  24. McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152

    PubMed  Google Scholar 

  25. Spuentrup E, Manning WJ, Botnar RM, Kissinger KV, Stuber M (2002) Impact of navigator timing on free-breathing submillimeter 3D coronary magnetic resonance angiography. Magn Reson Med 47:196–201

    Article  PubMed  Google Scholar 

  26. Hackenbroch M, Nehrke K, Gieseke J, Meyer C, Tiemann K, Litt H, Dewald O, Naehle CP, Schild H, Sommer T (2005) 3D motion adapted gating (3D MAG): a new navigator technique for accelerated acquisition of free breathing navigator gated 3D coronary MR-angiography. Eur Radiol 7:7

    Google Scholar 

  27. Nehrke K, Bornert P, Manke D, Bock JC (2001) Free-breathing cardiac MR imaging: study of implications of respiratory motion-initial results. Radiology 220:810–815

    PubMed  Google Scholar 

  28. Manke D, Nehrke K, Bornert P (2003) Novel prospective respiratory motion correction approach for free-breathing coronary MR angiography using a patient-adapted affine motion model. Magn Reson Med 50:122–131

    Article  PubMed  Google Scholar 

  29. Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E (2004) Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology 232:669–676 (Epub 2004 Jul 29)

    PubMed  Google Scholar 

  30. Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576

    PubMed  Google Scholar 

  31. Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758

    PubMed  Google Scholar 

  32. Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370

    Article  PubMed  Google Scholar 

  33. Stehning C, Bornert P, Nehrke K, Dossel O (2005) Free breathing 3D balanced FFE coronary magnetic resonance angiography with prolonged cardiac acquisition windows and intra-RR motion correction. Magn Reson Med 53:719–723

    Article  PubMed  Google Scholar 

  34. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999) Improved coronary artery definition with T2-weighted free-breathing 3D-coronary MRA. Circulation 99:3139–3148

    PubMed  Google Scholar 

  35. Stuber M, Botnar RM, Danias PG, Dodickson DK, Kissinger KV, Van Cauteren M, De Becker J, Manning WJ (1999) Double oblique free-breathing high-resolution 3D coronary MRA. J Am Coll Cardiol 34:524–531

    Article  PubMed  Google Scholar 

  36. Schar M, Kim WY, Stuber M, Boesiger P, Manning WJ, Botnar RM (2003) The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging 17:538–544

    Article  PubMed  Google Scholar 

  37. Wielopolski PA, van Geuns RJ, de Feyter PJ, Oudkerk M (1998) Breath-hold coronary MR angiography with volume targeted imaging. Radiology 209:209–219

    PubMed  Google Scholar 

  38. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  Google Scholar 

  39. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    PubMed  Google Scholar 

  40. Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228

    Article  PubMed  Google Scholar 

  41. Ichikawa Y, Sakuma H, Katsutoshi M, Okano S, Chino S, Hirano T, Takeda K (2005) Diagnostic accuracy of whole heart coronary magnetic resonance angiography for the detection of significant coronary artery stenoses in patients with suspected coronary artery disease. J Cardiovasc Magn Reson 7:60

    Google Scholar 

  42. Niendorf T, Sodickson DK, Hardy C, Darrow RD, Giaquinto RO, Saranathan M, Zhu Y, Kenwood G, Foo TK, Rofsky NM (2004) Towards whole heart coverage in a single breath-hold: Coronary artery imaging using a true 32-channel phased array MRI system. Proc Int Soc Magn Reson 12:703

    Google Scholar 

  43. Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429

    Article  PubMed  Google Scholar 

  44. Deshpande VS, Shea SM, Laub G, Simonetti OP, Finn JP, Li D (2001) 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med 46:494–502

    Article  PubMed  Google Scholar 

  45. Barkhausen J, Hunold P, Jochims M, Eggebrecht H, Sabin GV, Erbel R, Debatin JF (2002) [Comparison of gradient-echo and steady state free precession sequences for 3D-navigator MR angiography of coronary arteries]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:725–730

    Article  PubMed  Google Scholar 

  46. Spuentrup E, Bornert P, Botnar RM, Groen JP, Manning WJ, Stuber M (2002) Navigator-gated free-breathing three-dimensional Balanced FFE (TrueFISP) coronary MRA. Invest Radiol 37:637–642

    Article  PubMed  Google Scholar 

  47. Giorgi B, Dymarkowski S, Maes F, Kouwenhoven M, Bogaert J (2002) Improved visualization of coronary arteries using a new three-dimensional submillimeter MR coronary angiography sequence with balanced gradients. Am J Roentgenol 179:901–910

    Google Scholar 

  48. Spuentrup E, Buecker A, Stuber M, Botnar R, Nguyen TH, Bornert P, Kolker C, Gunther RW (2003) Navigator-gated coronary magnetic resonance angiography using steady-state-free-precession: comparison to standard t2-prepared gradient-echo and spiral imaging. Invest Radiol 38:263–268

    Article  PubMed  Google Scholar 

  49. Scheffler K, Heid O, Hennig J (2001) Magnetization preparation during the steady state: fat-saturated 3D TrueFISP. Magn Reson Med 45:1075–1080

    Article  PubMed  Google Scholar 

  50. Stuber M, Botnar R, Kissinger K, Manning W (2001) Free breathing black-blood coronary magnetic resonance angiography: initial results. Radiology 219:278–283

    PubMed  Google Scholar 

  51. Stuber M, Botnar RM, Spuentrup E, Kissinger KV, Manning WJ (2001) Three-dimensional high-resolution fast spin echo coronary magnetic resonance angiography. Magn Reson Med 45:206–211

    Article  PubMed  Google Scholar 

  52. Stuber M, Botnar RM, Danias PG, McConnell MV, Kissinger KV, Yucel EK, Manning WJ (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10:790–799

    Article  PubMed  Google Scholar 

  53. Hofman MBM, Henson RE, Kovacs SJ, Fischer SE, Lauffer RB, Adzamli K, De Becker J, Wickline SA, Lorenz CH (1999) Blood pool agent strongly improves 3D magnetic resonance coronary angiography using an inversion pre-pulse. Magn Reson Med 41:360–367

    Article  PubMed  Google Scholar 

  54. Herborn CU, Schmidt M, Bruder O, Nagel E, Shamsi K, Barkhausen J (2004) MR coronary angiography with SH L 643 A: initial experience in patients with coronary artery disease. Radiology 233:567–573 (Epub 2004 Sep 9)

    PubMed  Google Scholar 

  55. Taupitz M, Schnorr J, Wagner S, Abramjuk C, Pilgrimm H, Kivelitz D, Schink T, Hansel J, Laub G, Hunigen H, Hamm B (2002) Coronary MR angiography: experimental results with a monomer-stabilized blood pool contrast medium. Radiology 222:120–126

    PubMed  Google Scholar 

  56. Huber ME, Paetsch I, Schnackenburg B, Bornstedt A, Nagel E, Fleck E, Boesiger P, Maggioni F, Cavagna FM, Stuber M (2003) Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med 49:115–121

    Article  PubMed  Google Scholar 

  57. Stuber M, Börnert P, Spuentrup E, Botnar RM, Manning WJ (2002) Selective three-dimensional visualization of the coronary artery lumen using arterial spin tagging. Magn Reson Med 47:322–329

    Article  PubMed  Google Scholar 

  58. Spuentrup E, Katoh M, Stuber M, Botnar R, Schaeffter T, Buecker A, Gunther RW (2003) Coronary MR imaging using free-breathing 3D steady-state free precession with radial k-space sampling. Rofo 175:1330–1334

    PubMed  Google Scholar 

  59. Katoh M, Spuentrup E, Stuber M, Buecker A, Manning WJ, Gunther RW, Botnar RM (2005) Inversion prepared coronary MR angiography: direct visualization of coronary blood flow. Rofo 177:173–178

    PubMed  Google Scholar 

  60. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28:202–213

    PubMed  Google Scholar 

  61. Bornert P, Stuber M, Botnar RM, Kissinger KV, Koken P, Spuentrup E, Manning WJ (2001) Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography. Magn Reson Med 46:789–794

    Article  PubMed  Google Scholar 

  62. Larson AC, Simonetti OP, Li D (2002) Coronary MRA with 3D undersampled projection reconstruction TrueFISP. Magn Reson Med 48:594–601

    Article  PubMed  Google Scholar 

  63. Spuentrup E, Katoh M, Buecker A, Manning WJ, Schaeffter T, Nguyen TH, Kuhl HP, Stuber M, Botnar RM, Gunther RW (2004) Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with Cartesian k-space Sampling and Cartesian gradient-echo coronary MR angiography—pilot study. Radiology 24:24

    Google Scholar 

  64. Stehning C, Bornert P, Nehrke K, Eggers H, Dossel O (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52:197–203

    Article  PubMed  Google Scholar 

  65. Jahnke C, Paetsch I, Schnackenburg B, Gebker R, Kohler U, Bornstedt A, Fleck E, Nagel E (2004) Comparison of radial and Cartesian imaging techniques for MR coronary angiography. J Cardiovasc Magn Reson 6:865–875

    Article  PubMed  Google Scholar 

  66. Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ (2001) 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 46:848–854

    Article  PubMed  Google Scholar 

  67. Botnar RM, Stuber M, Lamerichs R, Smink J, Fischer SE, Harvey P, Manning WJ (2003) Initial experiences with in vivo right coronary artery human MR vessel wall imaging at 3 tesla. J Cardiovasc Magn Reson 5:589–594

    Article  PubMed  Google Scholar 

  68. Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ (2003) Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 108:605–609 (Epub 2003 Jun 30)

    Article  PubMed  Google Scholar 

  69. Botnar RM, Bucker A, Kim WY, Viohl I, Gunther RW, Spuentrup E (2003) Initial experiences with in vivo intravascular coronary vessel wall imaging. J Magn Reson Imaging 17:615–619

    Article  PubMed  Google Scholar 

  70. Saeed M, Saloner D, Weber O, Martin A, Henk C, Higgins C (2005) MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15:851–863 (Epub 2005 Jan 29)

    Article  PubMed  Google Scholar 

  71. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W, Wolf KJ (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35:460–471

    Article  PubMed  Google Scholar 

  72. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458 (Epub 2003 Apr 28)

    Article  PubMed  Google Scholar 

  73. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    PubMed  Google Scholar 

  74. Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3:913–925

    Article  PubMed  Google Scholar 

  75. Wickline SA, Lanza GM (2003) Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095

    Article  PubMed  Google Scholar 

  76. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  Google Scholar 

  77. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274 (Epub 2003 Oct 13)

    Article  PubMed  Google Scholar 

  78. Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    PubMed  Google Scholar 

  79. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A (1993) The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 171:223–229

    Article  PubMed  Google Scholar 

  80. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    PubMed  Google Scholar 

  81. Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, Hall CS, Gaffney PJ, Wickline SA, Lanza GM (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872

    Article  PubMed  Google Scholar 

  82. Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, Quist W, Parsons EC Jr, Vaidya A, Kolodziej A, Barrett JA, Graham PB, Weisskoff RM, Manning WJ, Johnstone MT (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029

    Article  PubMed  Google Scholar 

  83. Jaffer FA, Weissleder R (2004) Seeing Within. Molecular Imaging of the Cardiovascular System. Circ Res 94:433–445

    Article  PubMed  Google Scholar 

  84. Spuentrup E, Buecker A, Karassimos E, Gunther RW, Stuber M (2002) Navigator-gated and real-time motion corrected free-breathing MR Imaging of myocardial late enhancement. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:562–567

    Article  PubMed  Google Scholar 

  85. Sommer T, Hofer U, Hackenbroch M, Meyer C, Flacke S, Schmiedel A, Schmitz C, Thiemann K, Omran H, Schild H (2002) Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:459–466

    Article  PubMed  Google Scholar 

  86. Danias PG, Roussakis A, Ioannidis JP (2004) Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44:1867–1876

    Article  PubMed  Google Scholar 

  87. Paetsch I, Huber ME, Bornstedt A, Schnackenburg B, Boesiger P, Stuber M, Fleck E, Cavagna F, Nagel E (2004) Improved three-dimensional free-breathing coronary magnetic resonance angiography using gadocoletic acid (B-22956) for intravascular contrast enhancement. J Magn Reson Imaging 20:288–293

    Article  PubMed  Google Scholar 

  88. Spuentrup E, Botnar RM, Lanzer P (2002) Technical aspects of the coronary MR angiography. Z Kardiol 91:107–124

    PubMed  Google Scholar 

  89. Barkhausen J, Hunold P, Waltering KU (2004) MRI in coronary artery disease. Eur Radiol 14:215521–62 (Epub 2004 Sep 4)

    Article  Google Scholar 

  90. Langerak SE, Vliegen HW, Jukema JW, Kunz P, Zwinderman AH, Lamb HJ, van der Wall EE, de Roos A (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508

    Article  PubMed  Google Scholar 

  91. Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, Newburger JW, Manning WJ, Powell AJ (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911

    Article  PubMed  Google Scholar 

  92. Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Baras P, Nikolaidou P, Bakoula C, Karanasios E, Manginas A, Cokkinos DV (2004) Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol 43:649–652

    Article  PubMed  Google Scholar 

  93. Buecker A, Spuentrup E, Ruebben A, Mahnken AH, Nguyen TH, Kinzel S, Günther RW (2004) New metallic MR stents for artifact-free coronary MR angiography: feasibility study in a swine model. Invest Radiol 39:250–253

    Article  PubMed  Google Scholar 

  94. Hunold P, Quick HH, Eggebrecht H, Jökel M, Schmermund A, Rodermann J, Barkhausen J, Erbel R (2005) MR-compatible coronary stent: in-vitro and first human MR imaging experience with an absorbable magnesium alloy stent. J Cardiovasc Magn Reson 7:66

    Google Scholar 

  95. Quick HH, Ladd ME, Nanz D, Mikolajczyk KP, Debatin JF (1999) Vascular stents as RF antennas for intravascular MR guidance and imaging. Magn Reson Med 42:738–745

    Article  PubMed  Google Scholar 

  96. Kivelitz D, Wagner S, Hansel J, Schnorr J, Wetzler R, Busch M, Melzer A, Taupitz M, Hamm B (2001) The active magnetic resonance imaging stent (AMRIS): initial experimental in vivo results with locally amplified MR angiography and flow measurements. Invest Radiol 36:625–631

    Article  PubMed  Google Scholar 

  97. Katoh M, Spuentrup E, Buecker A, Schaeffter T, Stuber M, Gunther RW, Botnar RM. MR Coronary Vessel Wall Imaging: Impact of radial k-Space Sampling and Steady-State Free-Precession Imaging. Am J Roentgenol 2005:in press

  98. Spuentrup E, Ruebben A, Mahnken A, Stuber M, Kolker C, Nguyen TH, Gunther RW, Buecker A (2005) Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent. Circulation 111:1019–1026 (Epub 2005 Feb 21)

    Article  PubMed  Google Scholar 

  99. Johnstone MT, Botnar RM, Perez AS, Stewart R, Quist WC, Hamilton JA, Manning WJ (2001) In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model. Arterioscler Thromb Vasc Biol 21:1556–1560

    PubMed  Google Scholar 

  100. Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109:2890–2896 (Epub 2004 Jun 7)

    Article  PubMed  Google Scholar 

  101. Viereck J, Ruberg FL, Qiao Y, Perez AS, Detwiller K, Johnstone M, Hamilton JA (2005) MRI of atherothrombosis associated with plaque rupture. Arterioscler Thromb Vasc Biol 25:240–245 (Epub 2004 Nov 4)

    PubMed  Google Scholar 

  102. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    PubMed  Google Scholar 

  103. Rauch U, Osende JI, Fuster V, Badimon JJ, Fayad Z, Chesebro JH (2001) Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences. Ann Intern Med 134:224–238

    PubMed  Google Scholar 

  104. Johansson LO, Bjornerud A, Ahlstrom HK, Ladd DL, Fujii DK (2001) A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 13:615–618

    Article  PubMed  Google Scholar 

  105. Spuentrup E, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar R, Mahnken A, Gunther RW, Buecker A (2005) Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med (Epub ahead of print)

  106. Laurent S, Vander Elst L, Fu Y, Muller RN (2004) Synthesis and physicochemical characterization of Gd-DTPA-B(sLex)A, a new MRI contrast agent targeted to inflammation. Bioconjug Chem 15:99–103

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Spuentrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spuentrup, E., Botnar, R.M. Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis. Eur Radiol 16, 1–14 (2006). https://doi.org/10.1007/s00330-005-2886-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2886-7

Keywords

Navigation