Skip to main content

Advertisement

Log in

Intra-axial brain tumours

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The radiological diagnosis and differential diagnosis of intra-axial tumours no longer relies on CT scan and routine MR sequences alone. Standard multiplanar imaging has to be combined with fMRI to allow the exact anatomic location of the lesion and precise determination of the extension of the tumour. Perfusion and diffusion MR is becoming more and more important in the differential diagnosis of cerebral mass lesions and in the grading and typing of gliomas. More sophisticated techniques such as diffusion tensor imaging and spectroscopy will further enhance the value of the radiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Demaerel P, Beatse E, Roels K, Thijs V (2001) Intermediate short-term outcomes after brain computed tomography and magnetic resonance imaging in neurology outpatients. Med Decis Making 21(6):444–450

    Article  CAS  PubMed  Google Scholar 

  2. Demaerel P, Buelens C, Wilms G, Baert AL (1998) Cranial CT revisited: do we really need contrast enhancement? Eur Radiol 8(8):1447–1451

    Article  CAS  PubMed  Google Scholar 

  3. Desprechins B, Stadnik T, Koerts G, Shabana W, Breucq C, Osteaux M (1999) Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. Am J Neuroradiol 20(7):1252–1257

    CAS  PubMed  Google Scholar 

  4. Stadnik TW, Chaskis C, Michotte A, Shabana WM, van Rompaey K, Luypaert R, Budinsky L, Jellus V, Osteaux M (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. Am J Neuroradiol 22(5):969–976

    CAS  PubMed  Google Scholar 

  5. Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR 4th, Fitzek MM, Chiocca EA, Rabinov JD, Csavoy AN, Rosen BR, Hochberg FH, Schaefer PW, Gonzalez RG (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendroglimoas. Am J Neuroradiol 25(2):214–221

    PubMed  Google Scholar 

  6. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24(10):1989–1998

    PubMed  Google Scholar 

  7. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25(5):746–755

    PubMed  Google Scholar 

  8. Sunaert S, Yousry TA (2001) Clinical applications of functional magnetic resonance imaging. Neuroimaging Clin N Am 11(2):221–236

    CAS  PubMed  Google Scholar 

  9. Stippich C, Kress B, Ochmann H, Tronnier V, Sartor K (2003) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175(8):1042–1050

    Article  CAS  PubMed  Google Scholar 

  10. Barboriak DP (2003) Imaging of brain tumors with diffusion-weighted and diffusion tensor MR imaging. Magn Reson Imaging Clin N Am 11(3):379–401

    PubMed  Google Scholar 

  11. Sinha S, Bastin ME, Whittle IR, Wardlaw JM (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. Am J Neuroradiol 23(4):520–527

    PubMed  Google Scholar 

  12. Price SJ, Burnet NG, Donovan T, Green HA, Pena A, Antoun NM, Pickard JD, Carpenter TA, Gillard JH (2003) Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol 58(6):455–462

    Article  CAS  PubMed  Google Scholar 

  13. Wilms G, Bosmans H, Marchal G, Demaerel P, Goffin J, Plets C, Baert AL (1995) Magnetic resonance angiography of supratentorial tumours: comparison with selective digital subtraction angiography. Neuroradiology 37(1):42–47

    CAS  PubMed  Google Scholar 

  14. Wilms G, Bosmans H, Demaerel P, Marchal G (2001) Magnetic resonance angiography of the intracranial vessels. Eur J Radiol 38(1):10–18 (Review)

    Article  CAS  PubMed  Google Scholar 

  15. Akeson P, Larsson EM, Kristoffersen DT, Jonsson E, Holtas S (1995) Brain metastases-comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. Acta Radiol 36(3):300–306

    CAS  PubMed  Google Scholar 

  16. Yuh WTC, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ (1995) The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. Am J Neuroradiol 16:373–380

    CAS  PubMed  Google Scholar 

  17. Hahnel S, Jost G, Knauth M, Sartor K (2004) Current use and possible future applications of the magnetization transfer technique in neuroradiology. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176(2):175–182

    Article  CAS  PubMed  Google Scholar 

  18. Goel A (2002) Tumour induced hydrocephalus and oedema: pathology or natural defence. J Postgrad Med 48(2):153–154

    PubMed  Google Scholar 

  19. Goraj B, Spiller M, Valsamis MP, Kasoff SS, Tenner MS (1995) Determinants of signal intensity in MRI of human astrocytomas. Eur Radiol 5:74–82

    Google Scholar 

  20. Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, Carey RG (1990) Gliomas: classification with MR imaging. Radiology 174:411–415

    CAS  PubMed  Google Scholar 

  21. Coates TL, Hinshaw DB, Peckman N, Thompson JR, Hasso AN, Holshouser BA, Knierim DS (1989) Pediatric choroid plexus neoplasms: MR, CT, and pathologic correlation. Radiology 173:81–88

    CAS  PubMed  Google Scholar 

  22. Spoto GP, Press GA, Hesselink JR, Solomon M (1990) Intracranial ependymoma and subependymoma: MR manifestations. Am J Neuroradiol 11:83–91

    CAS  PubMed  Google Scholar 

  23. Reiche W, Grunwald I, Hermann K, Deinzer M, Reith W (2002) Oligodendrogliomas. Acta Radiol 43(5):474–482

    Article  CAS  PubMed  Google Scholar 

  24. Asari S, Makabe T, Katayama S, Itoh T, Tsuchida S, Ohmoto T (1994) Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology 36:308–310

    CAS  PubMed  Google Scholar 

  25. Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF (1998) The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49(4):436–440

    Article  CAS  PubMed  Google Scholar 

  26. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Liang L, Ushio Y, Takahashi M (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21(5):901–909

    CAS  PubMed  Google Scholar 

  27. Smith JK, Castillo M, Kwock L (2003) MR spectroscopy of brain tumors. Magn Reson Imaging Clin N Am 11(3):415–429

    PubMed  Google Scholar 

  28. Kleihues P, Burger PC, Scheithauer BW (1993) Histological typing of tumours of the central nervous system, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  29. Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. IARC, Lyon

    Google Scholar 

  30. Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, Senner V, Paulus W (2004) Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol (Berl) 107(3):272–276

    Article  Google Scholar 

  31. Nagashima G, Suzuki R, Asai JI, Noda M, Fujimoto M, Fujimoto T (2003) Tissue reconstruction process in the area of peri-tumoural oedema caused by glioblastoma-immunohistochemical and graphical analysis using brain obtained at autopsy. Acta Neurochir Suppl 86:507–511

    CAS  PubMed  Google Scholar 

  32. Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225

    CAS  PubMed  Google Scholar 

  33. Lee YY, Van Tassel P, Bruner JM, Moser RP, Share JC (1989) Juvenile pilocytic astrocytomas: CT and MR characteristics. Am J Neuroradiol 10:363–370

    Google Scholar 

  34. Lee YY, Van Tassel P (1989) Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. Am J Neuroradiol 10:119–127

    Google Scholar 

  35. Blatt GL, Ahuja A, Miller LL, Ostrow PT, Soloniuk DS (1995) Cerebellomedullary ganglioglioma: CT and MR findings. Am J Neuroradiol 16:790–792

    CAS  PubMed  Google Scholar 

  36. Castillo M, Davis PC, Takei Y, Hoffman JC (1990) Intracranial ganglioglioma: MR, CT, and clinical findings in 18 patients. Am J Neuroradiol 11:109–114

    CAS  PubMed  Google Scholar 

  37. Ildan F, Tuna M, Gocer IA, Erman T, Cetinalp E (2001) Intracerebral ganglioglioma: clinical and radiological study of eleven surgically treated cases with follow-up. Neurosurg Rev 24(2–3):114–118

    CAS  PubMed  Google Scholar 

  38. Ostertun B, Wolf HK, Campos MG, Matus C, Solymosi L, Elger CE, Schramm J, Schild HH (1996) Dysembryoplastic neuroepithelial tumors: MR and CT evaluation. Am J Neuroradiol 17:419–430

    CAS  PubMed  Google Scholar 

  39. Stanescu Cosson R, Varlet P, Beuvon F, Daumas Duport C, Devaux B, Chassoux F, Fredy D, Meder JF (2001) Dysembryoplastic neuroepithelial tumors: CT, MR findings and imaging follow-up: a study of 53 cases. J Neuroradiol 28(4):230–240

    CAS  PubMed  Google Scholar 

  40. Goergen SK, Gonzales MF, McLean CA (1992) Intraventricular neurocytoma: radiologic features and review of the literature. Radiol 182:787–792

    CAS  PubMed  Google Scholar 

  41. Jelinek J, Smirniotopoulos JG, Parisi JE, Kanzer M (1990) Lateral ventricular neoplasms of the brain: differential diagnosis based on clinical, CT, and MR findings. Am J Neuroradiol 11:567–574

    CAS  PubMed  Google Scholar 

  42. Robles HA, Smirniotopoulos JG, Figueroa RE (1992) Understanding the radiology of intracranial primitive neuroectodermal tumors from a pathological perspective: a review. Sem US CT MR 13:170–181

    CAS  Google Scholar 

  43. Mueller DP, Moore SA, Sato Y, Yuh WTC (1992) MRI spectrum of medulloblastoma. Clinical Imaging 16:250–255

    Article  CAS  PubMed  Google Scholar 

  44. Tortori-Donati P, Fondelli MP, Rossi A, Cama A, Caputo L, Andreussi L, Garré ML (1996) Medulloblastoma in children: CT and MRI findings. Neuroradiology 38:352–359

    Article  CAS  PubMed  Google Scholar 

  45. Koeller KK, Rushing EJ (2003) From the archives of the AFIP: medulloblastoma: a comprehensive review with radiologic-pathologic correlation. Radiographics 23(6):1613–1637

    PubMed  Google Scholar 

  46. Kochi M, Mihara Y, Takada A, Yatomi C, Morioka M, Yamashiro S, Yano S, Kuratsu J, Uemura S, Ushio Y (1991) MRI of subarachnoid dissemination of medulloblastoma. Neuroradiology 33:264–268

    CAS  PubMed  Google Scholar 

  47. Griffiths PD, Coley SC, Romanowski CA, Hodgson T, Wilkinson ID (2003) Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. Am J Neuroradiol 24(4):719–723

    PubMed  Google Scholar 

  48. Malheiros SM, Carrete H Jr, Stavale JN, Santos AJ, Borges LR, Guimaraes IF, Pelaez MP, Franco CM, Gabbai AA (2003) MRI of medulloblastoma in adults. Neuroradiology 45(7):463–467

    Article  CAS  PubMed  Google Scholar 

  49. Sawaya R (2001) Considerations in the diagnosis and management of brain metastases. Oncology (Huntingt) 15(9):1144–1154 (See also pages 1157–1158 Discussion 1158, 1163–1165)

    CAS  Google Scholar 

  50. Carrier DA, Mawad ME, Kirkpatrick JB, Schmid MF (1994) Metastatic adenocarcinoma to the brain: MR with pathologic correlation. Am J Neuroradiol 15:155–159

    CAS  PubMed  Google Scholar 

  51. Kremer S, Grand S, Berger F, Hoffmann D, Pasquier B, Remy C, Benabid AL, Bas JF (2003) Dynamic contrast-enhanced MRI: differentiating melanoma and renal carcinoma metastases from high-grade astrocytomas and other metastases. Neuroradiology 45(1):44–49

    CAS  PubMed  Google Scholar 

  52. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222(3):715–721

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilms, G., Demaerel, P. & Sunaert, S. Intra-axial brain tumours. Eur Radiol 15, 468–484 (2005). https://doi.org/10.1007/s00330-004-2555-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2555-2

Keywords

Navigation