Skip to main content
Log in

Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The high incidence of cartilage lesions together with new surgical treatment techniques have necessitated the development of noninvasive cartilage evaluation techniques. Although arthroscopy has been the standard for cartilage evaluation, MR imaging has emerged as the imaging method of choice, allowing morphological evaluation of cartilage and cartilage repair tissue, as well as evaluation of its biochemical content. This article deals with current ultrastructural MR imaging techniques for cartilage evaluation, indicating the advantages as well as the drawbacks for routine clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Fig. 2
Fig. 3 Fig. 4
Fig. 5 Fig. 6
Fig. 7 Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cooper C (1995) Occupational activity and the risk of osteoarthritis. J Rheumatol 43:10–12

    CAS  Google Scholar 

  2. Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, Hospodar PP (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR 167:127–132

    CAS  PubMed  Google Scholar 

  3. Daenen BR, Ferrara MA, Marcelis S, Dondelinger RF (1998) Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging. Eur Radiol 8:981–985

    CAS  PubMed  Google Scholar 

  4. Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, Belzer JP, Wischer TK, Genant HK (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR 172:1073–1080

    CAS  PubMed  Google Scholar 

  5. Suh JS, Lee SH, Jeong EK, Kim DJ (2001) Magnetic resonance imaging of articular cartilage. Eur Radiol 11:2015–2025

    CAS  PubMed  Google Scholar 

  6. Imhof H, Nobauer-Huhmann IM, Krestan C, Gahleitner A, Sulzbacher I, Marlovits S, Trattnig S (2002) MRI of the cartilage. Eur Radiol 12:2781–2793

    CAS  PubMed  Google Scholar 

  7. Sonin AH, Pensy RA, Mulligan ME, Hatem S (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR 179:1159–1166

    Google Scholar 

  8. Mohr A, Priebe M, Taouli B, Grimm J, Heller M, Brossmann J (2003) Selective water excitation for faster MR imaging of articular cartilage defects: initial clinical results. Eur Radiol 13:686–689

    CAS  PubMed  Google Scholar 

  9. Gold GE, Bergman AG, Pauly JM, Lang P, Butts RK, Beaulieu CF, Hargreaves B, Frank L, Boutin RD, Macovski A, Resnick D (1998) Magnetic resonance imaging of knee cartilage repair. Top Magn Reson Imaging 9:377–392

    CAS  PubMed  Google Scholar 

  10. Alparslan L, Minas T, Winalski CS (2001) Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MR 22:341–351

    CAS  Google Scholar 

  11. Recht M, White LM, Winalski CS, Miniaci A, Minas T, Parker RD (2003) MR imaging of cartilage repair procedures. Skeletal Radiol 32:185–200

    PubMed  Google Scholar 

  12. Buckwalter JA, Mankin HJ (1997) Articular cartilage. I. Tissue design and chondrocyte matrix interactions. J Bone Joint Surg Am 79:600–611

    Google Scholar 

  13. Buckwalter JA, Mow VC (1992) Cartilage repair in osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ (eds) Osteoarthritis. Saunders, Philadelphia, pp 71–107

  14. Mankin HJ, Brandt KD (1992) Biochemistry and metabolism of articular cartilage in osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ (eds) Osteoarthritis. Saunders, Philadelphia, pp 109–154

  15. Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Anat Entwicklungsgesch 76:43

    Google Scholar 

  16. Jeffery AK, Blunn GW, Archer CW, Bently G (1991) Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br 73:795–801

    CAS  PubMed  Google Scholar 

  17. Clark JM (1991) Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man. J Orthop Res 9:246–257

    CAS  PubMed  Google Scholar 

  18. Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR 174:405–409

    CAS  PubMed  Google Scholar 

  19. Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2 as a measure of cartilage degradation. Magn Reson Med 36:665–673

    CAS  PubMed  Google Scholar 

  20. Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd-DTPA2-enhanced MR imaging. Radiology 205:551–558

    CAS  PubMed  Google Scholar 

  21. Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17:577–583

    CAS  PubMed  Google Scholar 

  22. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd-DTPA2-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41

    CAS  PubMed  Google Scholar 

  23. Tiderius CJ, Olsson LE, Verdier H de, Leander P, Ekberg O, Dahlberg L (2001) Gd-DTPA2-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med 46:1067–1071

    CAS  PubMed  Google Scholar 

  24. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748

    Article  CAS  PubMed  Google Scholar 

  25. Nieminen MT, Rieppo J, Silvennoinen J, Toyras J, Hakumaki JM, Hyttinen MM, Helminen HJ, Jurvelin JS (2002) Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging. Magn Reson Med 48:640–648

    CAS  PubMed  Google Scholar 

  26. Stevens K, Berger F, Yoshioka H, Steines D, Genovese M, Lang P et al. (2001) Contrast-enhanced MRI measurements of GAG concentrations in articular cartilage of knees with early osteoarthritis. Proc 87th Scientific Assembly and Annual Meeting of the Radiological Society of North America, RSNA 2001. Radiology 221(P):288

    Google Scholar 

  27. Duewell SH, Ceckler TL, Ong K, Wen H, Jaffer FA, Chesnick SA, Balaban RS (1995) Musculoskeletal MR imaging at 4 T and at 1.5 T: comparison of relaxation times and image contrast. Radiology 196:551–555

    CAS  PubMed  Google Scholar 

  28. Donahue KM, Burstein D, Manning WJ, Gray ML (1994) Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 32:66–76

    CAS  PubMed  Google Scholar 

  29. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS (1997) T1-rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med 38:863–867

    CAS  PubMed  Google Scholar 

  30. Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T1-rho-relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthritis Cartilage 10:838–844

    CAS  PubMed  Google Scholar 

  31. Duvvuri U, Charagundla SR, Kudchodkar SB et al. (2001) Human knee: in vivo T1ρ-weighted MR imaging at 1.5 T—preliminary experience. Radiology 220:822–826

    CAS  PubMed  Google Scholar 

  32. Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701

    CAS  PubMed  Google Scholar 

  33. Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium MRI and proton MRI. Osteoarthritis Cartilage 8:288–293

    Article  CAS  PubMed  Google Scholar 

  34. Fragonas E, Mlynarik V, Jellus V, Micali F, Piras A, Toffanin R, Rizzo R, Vittur F (1998) Correlation between biochemical composition and magnetic resonance appearance of articular cartilage. Osteoarthritis Cartilage 6:24–32

    CAS  PubMed  Google Scholar 

  35. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550

    CAS  PubMed  Google Scholar 

  36. Frank LR, Wong EC, Luh WM, Ahn JM, Resnick D (1999) Articular cartilage in the knee: mapping of the physiologic parameters at MR imaging with a local gradient coil—preliminary results. Radiology 210:241–246

    CAS  PubMed  Google Scholar 

  37. Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 214:259–266

    CAS  PubMed  Google Scholar 

  38. Nieminen MT, Toyras J, Rieppo J, Hakumaki JM, Silvennoinen J, Helminen HJ, Jurvelin JS (2000) Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med 43:676–681

    CAS  PubMed  Google Scholar 

  39. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin JS (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    CAS  PubMed  Google Scholar 

  40. Xia Y, Moody JB, Alhadlaq H (2002) Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med 48:460–469

    PubMed  Google Scholar 

  41. Dardzinski BJ, Laor T, Schmithorst VJ, Klosterman L, Graham TB (2002) Mapping T2 relaxation time in the pediatric knee: feasibility with a clinical 1.5-T MR imaging system. Radiology 225:233–239

    PubMed  Google Scholar 

  42. Smith HE, Mosher TJ, Dardzinski BJ et al. (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55

    Article  CAS  PubMed  Google Scholar 

  43. Peto S, Gillis P (1990) Fiber-to-field angle dependence of proton nuclear magnetic relaxation in collagen. Magn Reson Imaging 8:705–712

    CAS  PubMed  Google Scholar 

  44. Xia Y, Farquhar T, Burton-Wurster N, Lust G (1997) Origin of cartilage laminae in MRI. J Magn Reson Imaging 7:887–894

    CAS  PubMed  Google Scholar 

  45. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR 177:665–669

    CAS  Google Scholar 

  46. Mlynarik V (2002) Magic angle effect in articular cartilage. AJR 178:1287–1288

    Google Scholar 

  47. Goodwin DW, Dunn JF (2002) MR imaging and T2 mapping of femoral cartilage. AJR 178:1569–1570

    Google Scholar 

  48. Lehner KB, Rechl HP, Gmeinwieser JK, Heuck AF, Lukas HP, Kohl HP (1989) Structure, function, and degeneration of bovine hyaline cartilage: assessment with MR imaging in vitro. Radiology 170:495–499

    CAS  PubMed  Google Scholar 

  49. Modl JM, Sether LA, Haughton VM, Kneeland JB (1991) Articular cartilage: correlation of histologic zones with signal intensity at MR imaging. Radiology 181:853–855

    CAS  PubMed  Google Scholar 

  50. Xia Y, Moody JB, Burton-Wurster N, Lust G (2001) Qualitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthritis Cartilage 9:393–406

    CAS  PubMed  Google Scholar 

  51. Mlynarik V, Degrassi A, Toffanin R, Vittur F, Cova M, Pozzi-Mucelli RS (1996) Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy. Magn Reson Imaging 14:435–442

    Article  PubMed  Google Scholar 

  52. Henkelman RM, Stanisz GJ, Kim JK, Bronskill MJ (1994) Anisotropy of NMR properties of tissues. Magn Reson Med 32:592–601

    CAS  PubMed  Google Scholar 

  53. Wolff SD, Balaban RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 191:199–202

    PubMed  Google Scholar 

  54. Hohe J, Faber S, Stammberger T, Reiser M, Englmeier KH, Eckstein F (2000) A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Osteoarthritis Cartilage 8:426–433

    Article  CAS  PubMed  Google Scholar 

  55. Lattanzio PJ, Marshall KW, Damyanovich AZ, Peemoeller H (2000) Macromolecule and water magnetization exchange modeling in articular cartilage. Magn Reson Med 44:840–851

    CAS  PubMed  Google Scholar 

  56. Grunder W, Wagner M, Werner A (1998) MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med 39:376–382

    PubMed  Google Scholar 

  57. Cova M, Toffanin R, Frezza F, Pozzi-Mucelli M, Mlynarik V, Pozzi-Mucelli RS, Vittur F, Dalla-Palma L (1998) Magnetic resonance imaging of articular cartilage: ex vivo study on normal cartilage correlated with magnetic resonance microscopy. Eur Radiol 8:1130–1136

    CAS  PubMed  Google Scholar 

  58. Shapiro EM, Borthakur A, Kaufman JH, Leigh JS, Reddy R (2001) Water distribution patterns inside bovine articular cartilage as visualized by1H magnetic resonance imaging. Osteoarthritis Cartilage 9:533–538

    CAS  PubMed  Google Scholar 

  59. Potter K, Butler JJ, Horton WE, Spencer RG (2000) Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy. Arthritis Rheum 43:1580–1590

    CAS  PubMed  Google Scholar 

  60. Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD (1993) Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 11:465–478

    CAS  PubMed  Google Scholar 

  61. Xia Y, Farquhar T, Burton-Wurster N, Vernier-Singer M, Lust G, Helinski L (1995) Self-diffusion monitors degraded cartilage. Arch Biochem Biophys 323:323–328

    Article  CAS  PubMed  Google Scholar 

  62. Quinn TM, Dierickx P, Grodzinsky AJ (2001) Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression. J Biomech 34:1483–1490

    CAS  PubMed  Google Scholar 

  63. Butts K, Pauly J, De Crespigny A, Mosely M (1997) Isotropic diffusion-weighted and spiral-navigated interleaved EPI for routine imaging of acute stroke. Magn Reson Med 38:741–749

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Van Breuseghem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Breuseghem, I. Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application. Eur Radiol 14, 184–192 (2004). https://doi.org/10.1007/s00330-003-2142-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-2142-y

Keywords

Navigation