Skip to main content

Advertisement

Log in

Polystyrene nanoparticles affect the innate immune system of the Antarctic sea urchin Sterechinus neumayeri

  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Plastic debris has been recognised as a potential stressor for Antarctic marine organisms. In this study, the effects of surface charged polystyrene nanoparticles (PS NPs) on the immune cells (coelomocytes) of the Antarctic sea urchin Sterechinus neumayeri were assessed through in vitro short-term cultures. The behaviour of anionic carboxylated (PS-COOH) and cationic amino-modified (PS-NH2) NPs in filtered natural sea water (NSW) from King George Island (South Shetland Islands) was characterised by dynamic light scattering. Cellular morphology, NP uptake, phagocytic capacity and gene expression were evaluated after 6 and 24 h of exposure to 1 and 5 µg mL−1 PS NPs. Secondary characterisation showed an initial good dispersion of PS NPs in NSW, followed by nano-scale aggregation after 24 h. Both PS NPs affected cellular phagocytosis and generated an inflammatory response against oxidative stress and apoptosis at the molecular level. Fluorescently labelled PS-COOH aggregates were internalised by phagocytes and associated to the modulation of genes related to external challenges, antioxidant responses and cell protection against stress and apoptosis. Exposure to PS-NH2 caused a strong decrease in phagocytic capacity and the formation of cellular debris at 5 µg mL−1 after 24 h, but low gene modulation, suggesting a threshold in coelomocytes defence ability against PS-NH2. This study represents the first attempt to assess the impact of nanoplastics on Antarctic marine organisms. Our findings demonstrate that PS NPs with different surface charges constitute a challenge for S. neumayeri immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Absher TM, Ferreira SL, Kern Y, Ferreira AL Jr, Christo SW, Ando RA (2019) Incidence and identification of microfibers in ocean waters in Admiralty Bay Antarctica. Environ Sci Pollut Res 26:292–298

    Article  CAS  Google Scholar 

  • Agnello M, Filosto S, Scudiero R, Rinaldi AM, Roccheri MC (2007) Cadmium induces an apoptotic response in sea urchin embryos. Cell Stress Chaperones 12:44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alijagic A, Pinsino A (2017) Probing safety of nanoparticles by outlining sea urchin sensing and signaling cascades. Ecotoxicol Environ Saf 144:416–421

    Article  CAS  PubMed  Google Scholar 

  • Andrady AL (2017) The plastic in microplastics: a review. Mar Pollut Bull 119:12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082

    Article  CAS  PubMed  Google Scholar 

  • Aronson RB, Thatje S, McClintock JB, Hughes KA (2011) Anthropogenic impacts on marine ecosystems in Antarctica. Ann NY Aca Sci 1223:82–107

    Article  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappa B. J Clin Invest 107:241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes DKA, Walters A, Gonçalves L (2010) Macroplastics at sea around Antarctica. Mar Environ Res 70:250–252

    Article  CAS  PubMed  Google Scholar 

  • Beddingfield SD, McClintock JB (1998) Differential survivorship, reproduction, growth and nutrient allocation in the regular echinoid Lytechinus variegatus (Lamarck) fed natural diets. J Exp Mar Biol Ecol 226:195–215

    Article  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Bergami E, Bocci E, Vannuccini ML, Monopoli M, Salvati A, Dawson KA, Corsi I (2016) Nano-sized polystyrene affects feeding, behaviour and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicol Env Saf 123:18–25

    Article  CAS  Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 189:159–169

    Article  CAS  PubMed  Google Scholar 

  • Besseling E, Wang B, Lurling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, Simpson JC, Dawson KA (2011) Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5:557–567

    Article  CAS  PubMed  Google Scholar 

  • Bexiga MG, Kelly C, Dawson KA, Simpson JC (2014) RNAi mediated inhibition of apoptosis fails to prevent cationic nanoparticle induced cell death in cultured cells. Nanomedicine 9:1651–1664

    Article  CAS  PubMed  Google Scholar 

  • Borges JCS, Porto-Neto LR, Mangiaterra MBBCD, Jensch BE, da Silva JRMC (2002) Phagocytosis in vitro and in vivo in the Antarctic sea urchin Sterechinus neumayeri at 0°C. Polar Biol 25:891–897

    Google Scholar 

  • Branco PC, Pressinotti LN, Borges JCS, Iunes RS, Kfoury JRJr, da Silva MO, Gonzalez M, dos Santos MF, Peck LS, Cooper EL, da Silva JRMC, (2012) Cellular biomarkers to elucidate global warming effects on Antarctic sea urchin Sterechinus neumayeri. Polar Biol 35:221–229

  • Branco PC, Figueiredo DAL, da Silva JRMC (2014) New insights into innate immune system of sea urchin: coelomocytes as biosensors for environmental stress. OA Biology 2:1–7

    Google Scholar 

  • Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata Echinoidea) on the Weddell Sea and slope (Antarctica): distribution abundance and biomass. Polar Biol 11:227–232

    Article  Google Scholar 

  • Brey T, Pearse J, Basch L, McClintock J, Slattery M (1995) Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Mar Biol 124:279–292

    Article  Google Scholar 

  • Butcher HL, Kennette WA, Collins O, Zalups RK, Koropatnick J (2004) Metallothionein mediates the level and activity of nuclear factor kappa B in murine fibroblasts. J Pharmacol Exp Therapeutics 310:589–598

    Article  CAS  Google Scholar 

  • Byrne M, Ho MA, Koleits L, Price C, King CK, Virtue P, Tilbrook B, Mamarek M (2013) Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Global Change Biol 19:2264–2275

    Article  Google Scholar 

  • Canesi L, Procházková P (2014) The Invertebrate immune system as a model for investigating the environmental impact of nanoparticles. In: Boraschi D, Duschl A (eds) Nanoparticles and the immune system, safety and effects. Elsevier, Oxford, pp 91–112. https://doi.org/10.1016/B978-0-12-408085-0.00010-8

  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

    Article  CAS  PubMed  Google Scholar 

  • Canesi L, Ciacci C, Bergami E, Monopoli MP, Dawson KA, Papa S, Canonico B, Corsi I (2015) Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res 111:34–40

    Article  CAS  PubMed  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, Cortese K, Caratto V, Monopoli MP, Dawson KA, Bergami E, Corsi I (2016) Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Environ Res 150:73–81

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? TRENDS Ecol Evol 20:1–3

    Article  PubMed  Google Scholar 

  • Corsi I, Cherr GN, Lenihan HS, Labille J, Hassellov M, Canesi L, Dondero F, Frenzilli G, Hristozov D, Puntes V, Della Torre C, Pinsino A, Libralato G, Marcomini A, Sabbioni E, Matranga V (2014) Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano 8:9694–9709

    Article  CAS  PubMed  Google Scholar 

  • Cowart DA, Ulrich PN, Miller DC, Marsh AG (2009) Salinity sensitivity of early embryos of the Antarctic sea urchin, Sterechinus neumayeri. Polar Biol 32:435–441

    Article  Google Scholar 

  • Cózar A, Echevarría F, González-Gordillo IJ, Irigoien X, Úbeda B, Hernández-Leónd S, Palmae AT, Navarrof S, García-de-Lomas J, Ruizg A, Fernández-de-Puellesh ML, Duartei CM (2014) Plastic debris in the open ocean. P Natl Acad Sci 111:10239–10244

    Article  CAS  Google Scholar 

  • Cózar A, Martí E, Duarte CM, García-de-Lomas J, van Sebille E, Ballatore TJ, Eguíluz VM, González-Gordillo JI, Pedrotti ML, Echevarría F, Troublè R, Irigoien X (2017) The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci Adv 3:e1600582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin Embryos Paracentrotus lividus. Environ Sci Technol 48:12302–12311

    Article  CAS  PubMed  Google Scholar 

  • Díaz A, Féral J-P, David B, Saucéde T, Poulin E (2011) Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res Pt II 58:205–211

    Article  Google Scholar 

  • Díaz A, Gérard K, González-Wevar C, Maturana C, Féral J-P, David B, Saucède T, Poulin E (2018) Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: the role of the last glaciation. PLoS ONE 13(6):e0197611. https://doi.org/10.1371/journal.pone.0197611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA, (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS ONE 6:e24438

  • Eberle KE, Wennmann JT, Kleespies RG, Jehle JA (2012) Basic techniques in insect virology. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Elsevier, New York, pp 15–74

  • Ericson JA, Ho MA, Miskelly A, King CK, Virtue P, Tilbrook B, Byrne M (2011) Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biol 35:1027–1034

    Article  Google Scholar 

  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons Afloat at sea. PLoS ONE 9:e111913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo DAL, Branco PC, dos Santos DA, Krupinski Emerenciano A, Stecca Iunes R, Borges JCS, da Silva JRMC (2016) Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra lucunter. Aquat Toxicol 180:84–94

    Article  CAS  Google Scholar 

  • Fotopoulou KN, Karapanagioti HN (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fraser CI, Kay GM, du Plessis M, Ryan PG (2017) Breaking down the barrier: dispersal across the Antarctic Polar Front. Ecography 40235–40237

  • Fröhlich E, Meindl C, Roblegg E, Ebner B, Absenger M, Pieber TR (2012) Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Part Fibre Toxicol 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambardella C, Morgana S, Ferrando S, Bramini M, Piazza V, Costa E, Garaventa F, Faimali M (2017) Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol Env Saf 145:50–257

    Article  CAS  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70, anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:2592–2601

    Article  CAS  PubMed  Google Scholar 

  • González K, Gaitán-Espitia J, Font A, Cárdenas CA, González-Aravena M (2016) Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin Sterechinus neumayeri. Rev Chil Hist Nat 89:2

    Article  Google Scholar 

  • González-Aravena M, Perez-Troncoso C, Urtubia R, Branco P, Silva JRMC, Mercado L, De Lorgeril J, Bethke J, Paschke K (2015) Immune response of the Antarctic sea urchin Sterechinus neumayeri: cellular, molecular and physiological approach. Rev Biol Trop 63:309–320

    Google Scholar 

  • Graham ER, Thompson JT (2009) Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368:22–29

    Article  Google Scholar 

  • Gregory MR, Kirk RM, Mabin MCG (1984) Pelagic tar, oil, plastics and other litter in surface waters of the New Zealand sector of the Southern Ocean and on Ross Dependency shores. NZ Antarct Rec 6:12–28

    Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KP, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron AR, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  PubMed  Google Scholar 

  • Isobe A, Uchiyama-Matsumoto K, Uchida K, Tokai T (2017) Microplastics in the Southern Ocean. Mar Pollut Bullet 114:623–626

    Article  CAS  Google Scholar 

  • Ivar do Sul JA, Barnes DKA, Costa MF, Convey P, Costa ES, Campos L, (2011) Plastics in the antarctic environment: are we looking only at the tip of the iceberg? Oecol Aust 15:150–170

  • Jia D, Hamilton J, Zaman LM, Goonewardene A (2007) The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres. Am J Phys 75:111

    Article  CAS  Google Scholar 

  • Jovanovic B, Palic D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish-review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118–119:141–151

    Article  CAS  PubMed  Google Scholar 

  • Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185

    Article  CAS  PubMed  Google Scholar 

  • Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K, Debeljak P, Maral H, Schoeneich-Argent R, Brambini R, Reisser J (2018) Evidence that the Great Pacific garbage patch is rapidly accumulating plastic. Sci Rep 8:4666

  • Lee JH, Takahashi T, Yasuhara N, Inazawa J, Kamada S, Tsujimoto Y (1999) Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 18:6183–6190

    Article  CAS  PubMed  Google Scholar 

  • Li C, Blencke H-M, Haug T, Stensvåg K (2015) Antimicrobial peptides in echinoderm host defense. Dev Comp Immunol 49:190–197. https://doi.org/10.1016/j.dci.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li W, Lao F, Liu Y, Wang L, Bai R, Zhao Y, Chen C (2011) Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32:8291–8303

    Article  CAS  PubMed  Google Scholar 

  • Lusher AL, Tirelli V, O’Connor I, Officer R (2015) Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep 5:14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magesky A, Oliveiro Ribeiro CA, Pelletier É (2016) Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver. Aquat Toxicol 174:208–227

    Article  CAS  PubMed  Google Scholar 

  • Majeske AJ, Bayne CJ, Smith LC (2013) Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide. PLoS ONE 8:e61419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MAN0485 (2013) Malvern Zetasizer Nano User Manual, Issue 1.1, Malvern Instruments Ltd. 2003, 2004. Worcestershire United Kingdom, pp 250

  • Marques-Santos LF, Grassi G, Bergami E, Faleri C, Balbi T, Salis A, Damonte G, Canesi L, Corsi I (2018) Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology:1–21. https://doi.org/10.1080/17435390.2018.1482378

  • Marsh AG (2009) Environmental and molecular mechanisms of cold adaptation in polar marine invertebrates. In: Land MA, Miller SE (eds) Smithsonian contribution at the poles. Smithsonian Institution Scholarly Press, Washington DC, pp 253–263

  • Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40

    Article  CAS  PubMed  Google Scholar 

  • Matranga V, Bonaventura R, Di Bella G (2002) Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell Mol Biol 48:345–359

    CAS  PubMed  Google Scholar 

  • McCord JM, Edeas MA (2005) SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother 59:139–142

    Article  CAS  PubMed  Google Scholar 

  • Munari C, Infantini V, Scoponi M, Rastelli E, Corinaldesi C, Mistri M (2017) Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull 122:161–165

    Article  CAS  PubMed  Google Scholar 

  • Nanocomposix (2012) Nanocomposix’s guide to dynamic light scattering measurement and analysis, Version 1.3, San Diego USA, pp 7

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Zhang Y, Lee AS (2011) Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 434:181–188

    Article  CAS  PubMed  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Gibbs MM, Andrew NL, Norkko J, Schwarz AM (2007) Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88:2810–2820

    Article  CAS  PubMed  Google Scholar 

  • Osovitz CJ, Hofmann GE (2005) Thermal history-dependent expression of the hsp70 gene in purple sea urchins: biogeographic patterns and the effect of temperature acclimation. J Exp Mar Biol Ecol 327:134–143

    Article  CAS  Google Scholar 

  • PA02N Safety Data Sheet. Bangs Laboratories Inc. https://www.bangslabs.com/sites/default/files/imce/docs/SDS%20PG114.pdf

  • Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C, Krumpen T, Bergmann M, Hehemann L, Gerdts G (2018) Arctic sea ice is an important temporal sink and means of transport for microplastic Nat Commun 9:1505

    PubMed  Google Scholar 

  • Piano A, Valbonesi P, Fabbri E (2004) Expression of cytoprotective proteins, heat shock protein 70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress Chaperone 9:134–142

    Article  CAS  Google Scholar 

  • Pierrat B, Saucède T, Festeau A, David B (2012a) Antarctic, Sub-Antarctic and cold temperate echinoid database. ZooKeys 204:47–52

    Article  Google Scholar 

  • Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B (2012b) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar Ecol Prog Ser 463:215–230

    Article  Google Scholar 

  • Pinsino A, Matranga V (2015) Sea urchin immune cells as sentinels of environmental stress. Dev Comp Immunol 49:198–205

    Article  CAS  PubMed  Google Scholar 

  • Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V (2015) Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci Rep 5:14492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinsino A, Bergami E, Della Torre C, Vannuccini ML, Addis P, Secci M, Dawson KA, Matranga V, Corsi I (2017) Amino modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos. Nanotoxicology 11:201–209

    Article  CAS  PubMed  Google Scholar 

  • Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R (2017) Bio-nano interface and environment: a critical review. Environ Toxicol Chem 36:3181–3193

    Article  CAS  PubMed  Google Scholar 

  • Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279

    Article  CAS  PubMed  Google Scholar 

  • Reed S, Clark M, Thompson R, Hughes KA (2018) Microplastics in marine sediments near Rothera Research Station, Antarctica. Mar Pollut Bull 133:460–463

    Article  CAS  PubMed  Google Scholar 

  • Reinardy HC, Bodnar AG (2015) Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes exposed to genotoxicants. Mutagenesis 30:829–839

    CAS  PubMed  Google Scholar 

  • Reinardy HC, Chapman J, Bodnar AG (2016) Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins. Biol Lett 12:20151057. https://doi.org/10.1098/rsbl.2015.1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300:321–334

    Article  CAS  PubMed  Google Scholar 

  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  PubMed  Google Scholar 

  • Salvati A, Åberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson KA (2011) Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine: NBM 7:818–826

  • Scott JL, Gabrielides C, Davidson RK, Swingler TE, Clark IM, Wallis GA, Boot-Handford RP, Kirkwood TBL, Talyor RW, Young DA (2010) Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 69:1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Serafim MA, Company RM, Bebianno MJ, Langston WJ (2002) Effect of temperature and size on metallothionein synthesis in the gills of Mytilus galloprovincialis exposed to cadmium. Mar Environ Res 54:361–365

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Nishimura N, Suzuki JS, Tohyama C, Naganuma A, Satoh M (2008) Role of metallothionein as a protective factor against radiation carcinogenesis. J Toxicol Sci 33:651–655

    Article  PubMed  Google Scholar 

  • Smith LC, Arizza V, Barela Hudgell MA, Barone G, Bodnar AG, Buckley KM, Cunsolo V, Dheilly NM, Franchi N, Fugmann SD, Furukawa R, Garcia-Arraras J, Henson JH, Hibino T, Irons ZH, Li C, Lun CM, Majeske AJ, Oren M, Pagliara P, Pinsino A, Raftos DA, Rast JP, Samasa B, Schillaci D, Schrankel CS, Stabili L, Stensväg K, Sutton E (2018) Echinodermata: the complex immune system in echinoderms. In: Cooper E (ed) Advances in comparative immunology. Springer, Cham, pp 409–501. https://doi.org/10.1007/978-3-319-76768-0_1

  • Stokes MD, Stewart B, Epel D (1996) The kinetics of the cortical reaction and respiratory burse following fertilization of Sterechinus neumayeri eggs. Antarct J US 31:119–120

    Google Scholar 

  • Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:1–3

    PubMed  Google Scholar 

  • Sweet MJ, Chesser A, Singleton I (2012) Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:113–142

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041–9047

    Article  CAS  PubMed  Google Scholar 

  • Taylor ML, Gwinnett C, Robinson LF, Woodall LC (2016) Plastic microfibre ingestion by deep-sea organisms. Sci Rep 6:33997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekman MB, Krumpen T, Bergmann M (2017) Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep-Sea Res Part I 120:88–99

    Article  Google Scholar 

  • Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, Gigault J (2017) Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol 51:13689–13697

    Article  CAS  PubMed  Google Scholar 

  • Tsai YL, Lee AS (2018) Cell Surface GRP78: Anchoring and translocation mechanisms and therapeutic potential in cancer. In: Pizzo SV (ed) Cell surface GRP78, a new paradigm in signal transduction biology. Academic Press, Cambridge, pp 41–62. https://doi.org/10.1016/C2016-0-00712-X

  • Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Article  CAS  PubMed  Google Scholar 

  • Waller CL, Griffith HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres CO, Hughes KA (2017) Microplastics in the Antarctic marine system: an emerging area of research. Sci Total Environ 598:220–227

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B, Dubeau L, Hinton DR, Lee AS (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17(3):488–498

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA (2013) Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5:10868–10876

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Pezeshki AM, Xiaofei YuX, Guo C, Subjeck JR, Wang X-Y (2015) The endoplasmic reticulum chaperone GRP170: from immunobiology to cancer therapeutics. Front Oncol 4:1–12

    Article  Google Scholar 

  • Weiss J (2003) Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria. Biochem Soc Trans 31:785–790

    Article  CAS  PubMed  Google Scholar 

  • Xavier JC, Brandt A, Ropert-Coudert Y, Badhe R, Gutt J, Havermans C, Jones C, Costa ES, Lochte K, Schloss IR, Kennicutt MC, Sutherland WJ (2016) Future challenges in Southern Ocean ecology research. Front Mar Sci 3

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  PubMed  Google Scholar 

  • Zheng LP, Hou L, Chang AK, Yu M, Ma J, Li X, Zou X-Y (2011) Expression pattern of a Gram-negative bacteria-binding protein in early embryonic development of Artemia sinica and after bacterial challenge. Dev Compart Immunol 35:35–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed in the framework of Plastics in Antarctic EnvironmenT (PLANET) project, funded by the Italian National Antarctic Program (PNRA 14_00090), in collaboration with the Brazilian Antarctic Program (PROANTAR 407904/2013–1) and the Chilean Antarctic Institute (INACH). The authors gratefully acknowledge Javier Cristobo (Spanish Institute of Oceanography IEO) for providing the animals, Mario Costa Cruz and Prof. Chao Yun Irene Yan (Centre of Facilities to Support Research, University of São Paulo CEFAP-USP, FAPESP 2009/53994–8) for their valuable support in confocal microscopy. Nanoparticle characterisation by Dynamic Light Scattering analysis was conducted at facilities of the Department of Biotechnologies, Chemistry and Pharmacy of the University of Siena (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bergami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59287 kb)

Supplementary file2 (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergami, E., Krupinski Emerenciano, A., González-Aravena, M. et al. Polystyrene nanoparticles affect the innate immune system of the Antarctic sea urchin Sterechinus neumayeri. Polar Biol 42, 743–757 (2019). https://doi.org/10.1007/s00300-019-02468-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02468-6

Keywords

Navigation