Skip to main content
Log in

Conventional and molecular analysis of the diet of gentoo penguins: contributions to assess scats for non-invasive penguin diet monitoring

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

There is a growing search for less invasive methods while studying the diet of Antarctic animals in the wild. Therefore, we compared the diet of gentoo penguins from stomach contents (i.e. through visual identification of prey remains) and scats (i.e. faeces), and further compared prey DNA assay in fresh and old scats. Prey remains identified visually in stomach contents and scats were broadly comparable: the crustaceans and fish were the most important components, with Themisto gaudichaudii clearly being the most frequent and numerous prey species in both sampling methods. By mass, differences in species frequency were observed in stomach contents (Parachaenichthys georgianus) and scats (Champsocephalus gunnari), with the former fish species absent in scats. Differences were detected in the most frequent prey (T. gaudichaudii and Euphausia superba) and in various fish species, most with bigger sizes in scats. Allometric equations to estimate most crustacean’s sizes (i.e. relationships between carapace and mass/total length) are needed. For DNA studies, when comparing DNA from fresh and old scats, both provided similar results that, in general, were also similar to the visual analysis. In order to use penguin scats (along with the use of DNA analyses) for monitoring purposes, allometric equations to estimate mass and size of prey (most crustaceans) and better designed species-specific primers are needed for targeting key prey species (e.g. Euphausia superba, T. gaudichaudii). These DNA methodologies can complement other methods (i.e. visual analyses and stomach contents analyses) in monitoring programs of penguins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agnew DJ (1997) Review—the CCAMLR ecosystem monitoring programme. Antarct Sci 9:235–242

    Article  Google Scholar 

  • Alonso H, Granadeiro JP, Waap S, Xavier J, Symondson WOC, Ramos JA, Catry P (2014) An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Mol Ecol 23:3719–3733

    Article  CAS  Google Scholar 

  • Bachy C, Dolan JR, López-García P, Deschamps P, Moreira D (2013) Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J 7:244–255

    Article  CAS  Google Scholar 

  • Barrett RT et al (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691

    Article  Google Scholar 

  • Bearshop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialization in diving seabirds. Mar Ecol Prog Ser 311:157–164

    Article  Google Scholar 

  • Bellan-Santini D, Ledoyer M (1974) Gammariens (Crustacea, Amphipoda) des Iles Kerguelen et Crozet. Tethys 5:635–708

    Google Scholar 

  • Berrow SD, Taylor RI, Murray AWA (1999) Influence of sampling protocol on diet determination of gentoo penguins Pygoscelis papua and Antarctic fur seals Arctocephalus gazella. Polar Biol 22:156–163

    Article  Google Scholar 

  • Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899

    Article  CAS  Google Scholar 

  • Boltovskoy D (1999) South Atlantic zooplankton. Backhuys Publishers, Leiden

    Google Scholar 

  • Bowser AK, Diamond AW, Addison JA (2013) From puffins to plankton: a DNA-based analysis of a seabird food chain in the northern Gulf of Maine. PLoS ONE 8:e83152

    Article  PubMed  Google Scholar 

  • Boyd IL (2002) Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J Appl Ecol 39:103–119

    Article  Google Scholar 

  • Brooke ML (2004) The food consumption of the world´s seabirds. Proc R Soc Lond B 271:S246–S248

    Article  Google Scholar 

  • Chekunova VI, Rynkova TI (1974) Energy requirements of the Antarctic crustacean Euphausia superba DANA. Oceanology 14:434–440

    Google Scholar 

  • Cherel Y, Le Corre M, Jaquemet S, Ménard F, Richard P, Weimerskirch H (2008) Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar Ecol Prog Ser 366:281–291

    Article  CAS  Google Scholar 

  • Clare E (2014) Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol Appl 7:1144–1157

    Article  PubMed  Google Scholar 

  • Clarke J, Kerry K (1994) The effects of monitoring procedures on Adélie penguins. CCAMLR Sci 1:155–164

    Google Scholar 

  • Constable AJ (2002) CCAMLR ecosystem monitoring and management: future work. CCAMLR Sci 9:233–253

    Google Scholar 

  • Croxall JP (1987) Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Croxall JP (1993) Diet. In: Laws RM (ed) Antarctic seals: research methods and techniques. Cambridge University Press, Cambridge, pp 268–290

    Chapter  Google Scholar 

  • Croxall JP, Prince PA (1980) The food of gentoo penguins Pygoscelis papua and macaroni penguins Eudyptes chrysolophus at South Georgia. Ibis 122:245–253

    Article  Google Scholar 

  • Croxall JP, Prince PA (1987) Seabirds as predators on marine resources, especially krill, at South Georgia. In: Croxall JP (ed) Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, pp 347–368

    Google Scholar 

  • Croxall JP, Davis RW, Oconnell MJ (1988) Diving patterns in relation to diet of gentoo and macaroni penguins at South Georgia. Condor 90:157–167

    Article  Google Scholar 

  • Croxall JP, Prince PA, Reid K (1997) Dietary segregation in South Georgia seabirds. J Zool 242:531–556

    Article  Google Scholar 

  • Croxall JP, Reid K, Prince PA (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser 177:115–131

    Article  Google Scholar 

  • Deagle BE, Tollit DJ, Jarman SN, Hindell MA, Trites AW, Gales NJ (2005) Molecular scatology as a tool to study diet: analyses of prey DNA in scats from captive Steller sea lions. Mol Ecol 14:1831–1842

    Article  CAS  Google Scholar 

  • Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindell MA (2007) Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2:e831

    Article  PubMed  Google Scholar 

  • Deagle BE, Chiaradia A, McInnes I, Jarman SN (2010) Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv Genet 11:2039–2048

    Article  Google Scholar 

  • Duffy DC, Jackson S (1986) Diet studies of seabirds: a review of methods. Colonial Waterbirds 9:1–17

    Article  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv:081257

  • Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    Article  CAS  Google Scholar 

  • Everson I (2002) Consideration of major issues in ecosystem monitoring and management. CCAMLR Sci 9:213–232

    Google Scholar 

  • Goebel ME, Lipsky JD, Reiss CS, Loeb VJ (2007) Using carapace measurements to determine the sex of Antarctic krill, Euphausia superba. Polar Biol 30:307–315

    Article  Google Scholar 

  • Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown

    Book  Google Scholar 

  • Gorman KB, Williams TD, Fraser WR (2014) Ecological sexual dimorphism and environmental variability within a community of Antarctic Penguins (Genus Pygoscelis). PLoS ONE 9:e90081

    Article  PubMed  Google Scholar 

  • Hecht T (1987) A guide to the otoliths of Southern Ocean fishes. S Afr J Antarctic Res 17:2–87

    Google Scholar 

  • Horswill C et al (2016) Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin. Mar Ecol Prog Ser 548:233–247

    Article  CAS  Google Scholar 

  • IUCN (2010) IUCN Red List of Threatened Species. Version 20104. www.iucnredlist.org

  • Jarman SN, Deagle BE, Gales NJ (2004) Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol 13:1313–1322

    Article  CAS  PubMed  Google Scholar 

  • Jarman S, Redd K, Gales N (2006) Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol Ecol 6:268–271

    Article  CAS  Google Scholar 

  • Jarman SN et al (2013) Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8:e82227

    Article  PubMed  Google Scholar 

  • Karnovsky NJ, Hobson KA, Iverson SJ (2012) From lavage to lipids: estimating diets of seabirds. Mar Ecol Prog Ser 451:263–284

    Article  CAS  Google Scholar 

  • Kato A, Williams TD, Barton TR, Rodwell S (1991) Short-term variation in the winter diet of gentoo penguins Pygoscelis papua at South Georgia during July 1989. Mar Ornithol 19:31–38

    Google Scholar 

  • King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood JM (1984) A guide to the Decapoda of the Southern Ocean. ANARE Res Notes 11:1–47

    Google Scholar 

  • Leray M et al (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34

    Article  PubMed  Google Scholar 

  • Lu Z, Xu S, Song N, Gao T, Tian J, Han J (2016) Analysis of the diet of finless porpoise (Neophocaena asiaeorientalis sunameri) based on prey morphological characters and DNA barcoding. Conserv Genet Resour 8:523–531

    Article  Google Scholar 

  • Lumsden WHR, Fladdow AJ (1946) The food of the Shag P. aristotelis in the Clyde Sea area. Anim Ecol 15:35–42

    Article  Google Scholar 

  • Lynnes A, Reid K, Croxall J (2004) Diet and reproductive success of Adélie and chinstrap penguins: linking response of predators to prey population dynamics. Polar Biol 27:544–554

    Article  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • McInnes JC, Emmerson L, Southwell C, Faux C, Jarman SN (2016a) Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins. R Soc Open Sci 3:150443

    Article  PubMed  Google Scholar 

  • McInnes JC, Raymond B, Phillips RA, Jarman SN, Lea M-A, Alderman R (2016b) A review of methods used to analyse albatross diets—assessing priorities across their range. ICES J Mar Sci 73:2125–2137

    Article  Google Scholar 

  • McInnes JC, Alderman R, Deagle BE, Lea M-A, Raymond B, Jarman SN (2017) Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol Evol 8:192–202

    Article  Google Scholar 

  • Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Murray DC et al (2011) DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches. PLoS ONE 6:e25776

    Article  CAS  PubMed  Google Scholar 

  • Olmos-Pérez L, Roura Á, Pierce GJ, Boyer S, González ÁF (2017) Diet composition and variability of wild Octopus vulgaris and Alloteuthis media (Cephalopoda) paralarvae: A Metagenomic Approach. Front Physiol 8:321

    Article  PubMed  Google Scholar 

  • Pakhomov E, Perissinotto R (1996) Trophodynamics of the hyperiid amphipod Themisto gaudichaudi in the South Georgia region during late austral summer. Mar Ecol Prog Ser 134:91–100

    Article  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Jr Torres F (1998) Fishing down marine food webs. Science 279:860–863

    Article  CAS  Google Scholar 

  • Peters KJ, Ophelkeller K, Bott NJ, Deagle BE, Jarman SN, Goldsworthy SD (2015) Fine-scale diet of the Australian sea lion (Neophoca cinerea) using DNA-based analysis of faeces. Mar Ecol 36:347–367

    Article  CAS  Google Scholar 

  • Polito MJ, Trivelpiece WZ, Karnovsky NJ, Ng E, Patterson WP, Emslie SD (2011) Integrating stomach content and stable isotope analyses to quantify the diets of Pygoscelid penguins. PLoS ONE 6:e26642

    Article  CAS  PubMed  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    Article  CAS  PubMed  Google Scholar 

  • Raclot T, Groscolas R, Cherel Y (1998) Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins, Aptenodytes patagonicus. Mar Biol 132:523–533

    Article  Google Scholar 

  • Rakusa-Suszczewski S, Stepnik R (1980) Three species of krill from Admiralty Bay (King George, South Shetlands), in summer 1978/79. Pol Arch Hydrobiol 27:273–284

    Google Scholar 

  • Ratcliffe N, Trathan PN (2011) A review of the diet and at sea-distribution of penguins breeding within the CCAMLR convention area. CCAMLR Sci 18:75–114

    Google Scholar 

  • Reid K (1996) A guide to the use of otoliths in the study of predators at South Georgia. British Antarctic Survey, Cambridge

    Google Scholar 

  • Reid K, Measures J (1998) Determining the sex of Antarctic krill Euphausia superba using carapace measurements. Polar Biol 19:145–147

    Article  Google Scholar 

  • Reid K, Croxall JP, Briggs DR, Murphy EJ (2005) Antarctic ecosystem monitoring: quantifying the response of ecosystem indicators to variability in Antarctic krill. ICES J Mar Sci 62:366–373

    Article  Google Scholar 

  • Roche (2012) 454 Sequencing system guidelines for amplicon experimental design. 454 Life Sciences Corp. Branford, USA

  • Schnell IB, Bohmann K, Thomas M, Gilbert P (2015) Tag jumps illuminated—reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 15:1289–1303

    Article  CAS  Google Scholar 

  • Seefelt NE, Gillingham JC (2006) A comparison of three methods to investigate the diet of breeding double-crested cormorants (Phalacrocorax auritus) in the Beaver Archipelago, northern Lake Michigan. Hydrobiol 567:57–67

    Article  Google Scholar 

  • Siegel V (1993) Review of length-weight relationships for Antarctic krill. SC-CAMLR Sel Sci Pap 9:145–155

    Google Scholar 

  • Siegel V, Mühlenhardt-Siegel U (1988) On the occurrence and biology of some Antarctic Mysidacea (Crustacea). Polar Biol 8:181–190

    Article  Google Scholar 

  • Smale MJ, Watson G, Hecht T (1995) Otolith atlas of Southern African marine fishes, vol 1. Ichthyological Monographs of the JLB Smith Institute of Ichthyology, Grahamstown

    Book  Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  CAS  Google Scholar 

  • Tanton JL, Reid K, Croxall JP, Trathan PN (2004) Winter distribution and behaviour of gentoo penguins Pygoscelis papua at South Georgia. Polar Biol 27:299–303

    Article  Google Scholar 

  • Thalinger B, Oehm J, Mayr H, Obwexer A, Zeisler C, Traugott M (2016) Molecular prey identification in Central European piscivores. Mol Ecol Resour 16:123–137

    Article  CAS  Google Scholar 

  • Tollit DJ, Heaslip SG, Barrick RL, Trites AW (2007) Impact of diet-index selection and the digestion of prey hard remains on determining the diet of the Steller sea lion (Eumetopias jubatus). Can J Zool 85:1–15

    Article  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    Article  Google Scholar 

  • Waap S (2015) Trophic relationships among pelagic predators of the deep seas of the Madeira Islands. Doctoral dissertation, Cardiff University (United Kingdom)

  • Waluda CM, Hill SL, Peat HJ, Trathan PN (2017) Long-term variability in the diet and reproductive performance of penguins at Bird Island, South Georgia. Mar Biol 164:39

    Article  Google Scholar 

  • Williams TD (1990) Foraging ecology and diet of gentoo penguins (Pygoscelis papua) at South Georgia during winter and an assessment of their winter prey consumption (WG-CEMP-90/16). Working Group for the CCAMLR Ecosystem Monitoring Program, Stockholm

  • Williams R, McEldowney A (1990) A guide to the fish otoliths from waters off the Australian Antarctic Territory, Heard and Macquarie Island vol 75. ANARE Research Notes

  • Wilson RP (1984) An improved pump for penguins and other seabirds. J Field Ornithol 55:109–112

    Google Scholar 

  • Wilson RP (2010) Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. Funct Ecol 2010:649–657

    Google Scholar 

  • Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. British Antarctic Survey, Cambridge

    Google Scholar 

  • Xavier JC, Croxall JP, Reid K (2003) Inter-annual variation in the diet of two albatross species breeding at South Georgia: implications for breeding performance. Ibis 145:593–610

    Article  Google Scholar 

  • Xavier JC, Trathan PN, Croxall JP, Wood AG, Podestá GP, Rodhouse PG (2004) Foraging ecology and interactions with fisheries of wandering albatrosses at South Georgia. Fish Oceanogr 13:324–344

    Article  Google Scholar 

  • Xavier JC, Croxall JP, Cresswell KA (2005) Boluses: an effective method to assess the proportions of cephalopods in the diet of albatrosses. Auk 122:1182–1190

    Article  Google Scholar 

  • Xavier JC et al (2017) Sexual and individual foraging segregation in Gentoo penguins Pygoscelis papua from the Southern Ocean during an abnormal winter. PLoS ONE 12:e0174850

    Article  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Antarctic science Bursary for the Antarctic Science scholarship awarded to this project and the editor Dieter Piepenburg, Tom Hart and two other referees for their comments. JX is supported by the Investigator FCT program (IF/00616/2013) and is part of the SCAR Ant-ERA, SCAR EGBAMM, PROPOLAR and ICED programs. This study benefited from the strategic program of MARE, financed by FCT (MARE- UID/MAR/04292/2013). We thank Naomi Treble and Alexandra McCubbin for their support in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. Xavier.

Ethics declarations

Conflict of interests

The authors have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.C., Cherel, Y., Medeiros, R. et al. Conventional and molecular analysis of the diet of gentoo penguins: contributions to assess scats for non-invasive penguin diet monitoring. Polar Biol 41, 2275–2287 (2018). https://doi.org/10.1007/s00300-018-2364-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2364-8

Keywords

Navigation