Skip to main content
Log in

The Araneae of Svalbard: the relationships between specific environmental factors and spider assemblages in the High Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

As top predators in the Arctic invertebrate fauna, spiders in Svalbard are key components of the terrestrial ecosystem. However, most descriptions consist of observations of species occurrence and few repeated sampling campaigns investigating these heterogeneous assemblages, or the relationship between microhabitats and seasonality, exist. Spider assemblages were evaluated along four altitudinal transects (c. 10–300 m above mean sea level) on the west coast of Spitsbergen, Svalbard, throughout the summer of 2012. The slopes were selected to include most of the vegetation types typical for this region of Svalbard. Eleven of the known 15 native spider species were collected (10 Linyphiidae and 1 Gnaphosidae). We used Generalised Linear Models (GLM) for each spider species to identify the factors best explaining spider species abundance and distribution. The distribution of the majority of spider species was best described by vegetation or topography and none was accurately predicted by temperature. Only two species (Erigone arctica palaearctica and Hilaira glacialis) were common at all four sites and these two constituted 54% (1650 and 639 individuals, respectively) of the total spider individuals trapped. That assemblages of linyphiid spiders can differ greatly over small local and temporal scales further demonstrates the complexity of the Arctic terrestrial invertebrate community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aakra K, Hauge E (2003) Checklist of Norwegian spiders (Arachnida: Araneae), including Svalbard and Jan Mayen. Nor J Entomol 50:109–129

    Google Scholar 

  • Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zool Anz 202:177–184

    Google Scholar 

  • Agnarsson I (1996) Íslenskar köngulaer. Fjölrit Náttúrufraedistofnunar 31:1–175

    Google Scholar 

  • Bartoń K (2013) MuMIn: Multi-modal inference. R package version 1.9.5. http://CRAN.R-project.org/package=MUMIn

  • Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387

    Article  Google Scholar 

  • Bonte D, Baert L, Maelfait JP (2002) Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J Arachnol 30:331–343

    Article  Google Scholar 

  • Bowden JJ, Buddle CM (2010a) Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic 63:261–272

    Article  Google Scholar 

  • Bowden JJ, Buddle CM (2010b) Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Territory, Canada. Ecoscience 17:287–297

    Article  Google Scholar 

  • Brændegaard J (1946) The spiders (Araneina) of East Greenland: a faunistic and zoogeographical investigation. Meddelelser om Grønland 121:1–128

    Google Scholar 

  • Breymeyer A (1966) Relations between wandering spiders and other epigeic predatory Arthropoda. Ekologia Polska Seria A 14:27–71

    Google Scholar 

  • Bristowe WS (1933) The spiders of bear island. Norsk entomologisk tidsskrift 3:149–154

    Google Scholar 

  • Brown GR, Matthews IM (2016) A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol 6(12):3953–3964

    Article  PubMed  PubMed Central  Google Scholar 

  • Buddle CM, Draney ML (2004) Phenology of linyphiids in an old-growth deciduous forest in central Alberta, Canada. J Arachnol 32:221–230

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Calow P (ed) (1999) Blackwells concise encyclopedia of ecology. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Carrel JE (1978) Behavioral thermoregulation during winter in an orb-weaving spider. Symp Zool Soc Lond 42:41–50

    Google Scholar 

  • Convey P, Coulson SJ, Worland MR Sjöblom A (under review) Implications of annual and shorter term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol

  • Cotton MJ (1979) A collection of spiders of North-East Greenland. Arctic 32:71–75

    Article  Google Scholar 

  • Coulson SJ (2007) The terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa 1448:41–58

    Google Scholar 

  • Coulson SJ (2015) The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna. Polar Res 34:27364. https://doi.org/10.3402/polar.v34.27364

    Article  Google Scholar 

  • Coulson SJ, Refseth D (2004) The terrestrial and freshwater invertebrate fauna of Svalbard (and Jan Mayen). In: Prestrud P, Strøm H, Goldman HV (eds) A catalogue of the terrestrial and marine animals of Svalbard. Nor Polarinst Skr 201:57–122

  • Coulson SJ, Hodkinson ID, Strathdee AT, Bale JS, Block W, Worland MR, Webb NR (1993) Simulated climate change: the interaction between vegetation type and microhabitat temperatures at Ny Ålesund, Svalbard. Polar Biol 13:67–70

    Article  Google Scholar 

  • Coulson SJ, Hodkinson ID, Webb NR (2003) Microscale distribution patterns in high Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. Ecography 26:801–809

    Article  Google Scholar 

  • Coulson SJ, Ávila-Jiménez ML, Fjellberg A, Snazell R, Gwiazdowicz DJ (2011) On the Collembola, Araneae and Gamasida from the Kinnvika region of Nordaustlandet, Svalbard. Geogr Ann 93:253–257

    Article  Google Scholar 

  • Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma EM, Boström S, Brittain JE, Carlsson AM, Christoffersen KS, De Smet WH, Ekrem T, Fjellberg A, Füreder L, Gustafsson D, Gwiazdowicz DJ, Hansen LO, Holmstrup M, Hullé M, Kaczmarek Ł, Kolicka M, Kuklin V, Lakka H-K, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanaevitch A, Taskaeva A, Velle G, Zawierucha K, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470

    Article  CAS  Google Scholar 

  • Davies KF, Melbourne BA, McClenahan JL, Tuff T (2011) Statistical models for monitoring and predicting effects of climate change and invasion on the free-living insects and a spider from sub-Antarctic Heard Island. Polar Biol 34:119–125

    Article  Google Scholar 

  • DeVito J, Meik JM, Gerson MM, Formanowicz DR Jr (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82:1119–1125

    Article  Google Scholar 

  • Doane JF, Dondale CD (1979) Seasonal captures of spiders (Araneae) in a wheat field and its grassy borders in central Saskatchewan. Can Entomol 111:439–445

    Article  Google Scholar 

  • Duffey E (1956) Aerial dispersal in a known spider population. J Anim Ecol 25:85–111

    Article  Google Scholar 

  • Duffey E (1998) Aerial dispersal in spiders. In: Selden PA (ed) Proceedings of the 17th European Colloquium of Arachnology. British Arachnological Society, Burnham Beeches, pp 189–191

  • Duffey E (2005) Regional variation of habitat tolerance by some European spiders (Araneae)—a review. Arachn Mitt 29:25–34

    Google Scholar 

  • Elvebakk A (1994) A survey of plant associations and alliances from Svalbard. J Veg Sci 5:791–802

    Article  Google Scholar 

  • Elvebakk A (2005) A vegetation map of Svalbard on the scale 1:3.5 mill. Phytocoenologia 35:951–967

    Article  Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448

    Article  Google Scholar 

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol. https://doi.org/10.1155/2011/893790

    Article  Google Scholar 

  • Freeman JA (1946) The distribution of spiders and mites up to 300 ft. in the air. J Anim Ecol 15:69–74

    Article  Google Scholar 

  • Frick H, Kropf C, Nentwig W (2007) Laboratory temperature preferences of the wolf spider Pardosa riparia (Araneae: Lycosidae). Bull Br arachnol Soc 14:45–48

    Article  Google Scholar 

  • Fridriksson S (1975) Surtsey. Evolution of life on a volcanic island, Butterworths

    Google Scholar 

  • Glick PA (1939) The distribution of insects, spiders, and mites in the air. Tech Bull US Dep Agric 673:1–150

    Google Scholar 

  • Hågvar S, Hegstad A (1969) A sample of spiders (Araneida) from Svalbard. Nor Polarinst Årb, Norwegian Polar Institute, Oslo, pp 218–220

    Google Scholar 

  • Hansen RR, Hansen OLP, Bowden JJ, Normand S, Bay C, Sørensen JG, Høye TT (2016a) High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap. Polar Biol 39:2263. https://doi.org/10.1007/s00300-016-1893-2

    Article  Google Scholar 

  • Hansen RR, Hansen OLP, Bowden JJ, Treier UA, Normand S, Høye TT (2016b) Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. Peer J 4:e2224. https://doi.org/10.7717/peerj.2224

    Article  PubMed  PubMed Central  Google Scholar 

  • Harwood JD, Sunderland KD, Symondson WOC (2001) Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J Appl Ecol 38:88–99

    Article  Google Scholar 

  • Hawes TC (2007) Ballooning in High Arctic linyphiids: a case of behavioural atrophy? Arachnology 14:39–42

    Article  Google Scholar 

  • Hawes TC (2008) Aeolian fallout on recently deglaciated terrain in the high Arctic. Polar Biol 31:295–301

    Article  Google Scholar 

  • Heydemann B (1961) Untersuchungen über die Aktivitäts- und Besiedlungsdichte bei Epigäische Spinnen. Verh Deutsch Zool Ges Saarbrücken:538–556

  • Hinz W (1976) Zur Ökologie der Tundra Zentralspitsbergen. Nor Polarinst Skr 163:1–47

    Google Scholar 

  • Hisdal V (1985) Geography of Svalbard. Norwegian Polar Institute, Oslo

    Google Scholar 

  • Hodkinson ID (2013) Terrestrial and freshwater invertebrates. In: Meltofte H (ed) Arctic biodiversity assesment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp 194–223

    Google Scholar 

  • Hodkinson ID, Coulson SJ (2004) Are high Arctic terrestrial food chains really that simple—the Bear Island food web revisited. Oikos 106:427–431

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Harrison J, Webb NR (2001) What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the High Arctic—some counter intuitive ideas on community assembly. Oikos 95:349–352

    Article  Google Scholar 

  • Hodkinson ID, Webb NR, Coulson SJ (2002) Primary community assembly on land—the missing stages: why are the heterotrophic organisms always there first? J Ecol. https://doi.org/10.1046/j.1365-2745.2002.00696.x

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73:556–568

    Article  Google Scholar 

  • Holm Å (1937) Zur Kenntnis der Spinnenfauna Spitzbergens und der Bären Insel. Arkiv för Zoologi 29:1–13

    Google Scholar 

  • Holm Å (1956) Notes on Arctic spiders of the genera Erigone Aud. and Hilaira Sim. Arkiv för Zoologi 9:453–468

    Google Scholar 

  • Holm Å (1958) The spiders of the Isfjord region on Spitsbergen. Zoologiska Bidrag Från Uppsala, Bd 33:29–67

    Google Scholar 

  • Holm Å (1960) Notes on Arctic spiders. Ark Zool 12:511–514

    Google Scholar 

  • Holm Å (1967) Spiders (Araneae) form West Greenland. Meddelelser om Grønland 184:1–99

    Google Scholar 

  • Høye TT, Forchhammer MC (2008) Phenology of High-Arctic arthropods: effects of climate on spatial, seasonal, and inter-annual variation. Adv Ecol Res 40:299–324

    Article  Google Scholar 

  • Humphreys WF (1987) The thermal biology of the wolf spider Lycosa tarentula (Araneae: Lycosidae) in northern Greece. Bull Br arachnol Soc 7:117–122

    Google Scholar 

  • Jackman S (2012) pscl: classes and methods for R developed in the Political Science Computational Laboratory, Standford University. Department of Political Science, Stanford University. Stanford, California. R version 1.04.4. http://pscl.standford.edu/

  • Jiménez-Valverde A, Baselga A, Melic A, Txasko N (2010) Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv Divers 3:51–60

    Article  Google Scholar 

  • Johnson LR (2010) Implications of dispersal and life history strategies for the persistence of Linyphiid spider populations. Ecol Model 221:1138–1147

    Article  Google Scholar 

  • Jónsdóttir IS (2005) Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. Proc R Irish Acad 105:155–165

    Article  Google Scholar 

  • Koponen S (1980) Spider fauna in the Adventfjorden area, Spitsbergen. Rep Kevo Subarctic Res Stat 16:13–16

    Google Scholar 

  • Koponen S (1987) Communities of ground-living spiders in six habitats on a mountain in Quebec, Canada. Holarctic Ecol 10:278–285

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Lafage D, Maugenest S, Bouzillé J-B, Pétillion J (2015) Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol Res 30:1025–1035

    Article  Google Scholar 

  • Lincoln R, Boxshall G, Clark P (1998) A dictionary of ecology, evolution and systematics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lindroth CH, Andersson H, Bodvarsson H, Richter SH (1973) Surtsey, Iceland. The development of a new fauna 1963–70. Terrestrial invertebrates. Entomologica Scandinavica Supplement 5:7–280

    Google Scholar 

  • Luff ML (1975) Some features influencing the efficiency of pitfall traps. Oecologia 19:345–347

    Article  CAS  PubMed  Google Scholar 

  • Marshall SD, Rypstra AL (1999) Spider competition in structurally simple ecosystems. J Arachnol 27:343–350

    CAS  Google Scholar 

  • Marusik YM, Böcher J, Koponen S (2006) The collection of Greenland spiders (Aranei) kept in the Zoological Museum, University of Copenhagen. Arthropoda Selecta 15:59–80

    Google Scholar 

  • McCoy ED (1990) The distribution of insects along elevational gradients. Oikos 58:313–322

    Article  Google Scholar 

  • Migała K, Wojtuń B, Szymański W, Muskała P (2014) Soil moisture and temperature variation under different types of tundra vegetation during the growing season: a case study from the Fuglebekken catchment, SW Spitsbergen. CATENA 116:10–18

    Article  Google Scholar 

  • Moring JB, Stewart KW (1994) Habitat partitioning by the wolf spider (Araneae, Lycosidae) guild in streamside and riparian vegetation zones of the Conejos river, Colorado. J Arachnol 22:205–217

    Google Scholar 

  • Muma MH (1973) Comparison of ground surface spiders in four central Florida ecosystems. Fla Entomol 56:172–196

    Article  Google Scholar 

  • Otto C, Svensson BS (1982) Structure of communities of ground-living spiders along altitudinal gradients. Holarct Ecol 5:35–47

    Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    Article  CAS  PubMed  Google Scholar 

  • Parker JR (1969) On the establishment of Cornicularia clavicornis Emerton (Araneae) as a British species. Bull Br arachnol Soc 1:49–54

    Google Scholar 

  • Peeters B, Veiberg V, Pedersen ÅØ, Stein A, Irvine RJ, Aanes R, Sæther B-E, Strand O, Hansen BB (2017) Climate and density dependence cause changes in adult sex ratio in a large Arctic herbivore. Ecosphere. https://doi.org/10.1002/ecs2.1699

    Article  Google Scholar 

  • Pétillon J, Georges A, Canard A, Lefeuvre J-C, Bakker JP, Ysnel F (2008) Influence of abiotic factors on spider and ground beetle communities in different salt-marsh systems. Basic Appl Ecol 9:743–751

    Article  Google Scholar 

  • Portela E, Willemart RH, Gasnier TR (2013) Soil type preference and the coexistence of two species of wandering spiders (Ctenus amphora and C. crulsi: Ctenidae) in a rainforest in central Amazonia. J Arachnol 41:85–87

    Article  Google Scholar 

  • Prieto-Benítez S, Méndez M (2011) Effects of land management on the abundance and richness of spider (Araneae): a meta-analysis. Biol Conserv 144:683–691

    Article  Google Scholar 

  • Ramade F (2002) Dictionnaire encyclopédique de l’écologie et des sciences de l’environnement, 2nd edn. Dunod, Paris

    Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Řezáč M, Řezáčová V, Pekár S (2007) The distribution of purse-web Atypus spiders (Araneae: Mygalomorphae) in central Europe is constrained by microclimatic continentality and soil compactness. J Biogeogr 34:1016–1027

    Article  Google Scholar 

  • Roberts MJ (1995) Spiders of Britain and Northern Europe. Collins Field Guide. Harper Collins Publishers, New York

    Google Scholar 

  • Rushton SP, Eyre MD (1992) Grassland spider habitats in North-east England. J Biogeogr 19:99–108

    Article  Google Scholar 

  • Rypstra AL (1986) Web spiders in temperate and tropical forests: relative abundance and environmental correlates. Am Midl Nat 115:42–51

    Article  Google Scholar 

  • Saaristo MI, Koponen S (1998) A review of northern Canadian spiders of the genus Agyneta (Araneae, Linyphiidae), with descriptions of two new species. Can J Zool 76:566–583

    Article  Google Scholar 

  • Saska P, van der Werf W, Hemerik L, Luff ML, Hatten TD, Honek A (2013) Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. J Appl Ecol 50:181–189

    Article  PubMed  Google Scholar 

  • Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol 16:2602–2613

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schmoller R (1970) Life histories of alpine tundra Arachnida in Colorado. Am Midl Nat 83:119–133

    Article  Google Scholar 

  • Seniczak S, Seniczak A, Gwiazdowicz DJ, Coulson SJ (2014) Community structure of Oribatid and Gamasid mites (Acari) in moss-grass tundra in Svalbard (Spitsbergen, Norway). Arct Antarc Alp Res 46:591–599

    Article  Google Scholar 

  • Seniczak S, Seniczak A, Coulson SJ (2015) Morphology, distribution, and biology of Mycobates sarekensis (Acari: Oribatida: Punctoribatidae). Int J Acarology 41:663–675

    Article  Google Scholar 

  • Sikes DS, Draney ML, Fleshman B (2013) Unexpectedly high among-habitat spider (Araneae) faunal diversity from the Arctic Long-Term Experimental Research (LTER) field station at Toolik Lake, Alaska, United States of America. Can Entomol 145:219–226

    Article  Google Scholar 

  • Solstad H, Eidesen PB, Little L, Elven R (2014) To valmue-arterpå Svalbard, oglittom fjell-ogpolarvalmuer. Blyttia 72:187–196

    Google Scholar 

  • Sømme L, Block W (1991) Adaptations to alpine and polar environments in insects and other terrestrial arthropods. In: Lee RE Jr, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York and London, pp 318–359

    Chapter  Google Scholar 

  • Stein A, Ims RA, Albon SD, Fuglei E, Irvine RJ, Ropstad E, Halvorsen O, Langvatn R, Loe LE, Veiberg V, Yoccoz NG (2012) Congruent responses to weather variability in high arctic herbivores. Biol Lett 8:1002–1005

    Article  Google Scholar 

  • Summerhayes VS, Elton CS (1923) Contributions to the ecology of Spitsbergen and Bear Island. J Ecol 11:214–286

    Article  Google Scholar 

  • Suominen O, Niemelä J, Martikainen P, Niemelä P, Kojola I (2003) Impact of reindeer grazing on ground-dwelling Carabidae and Curculionidae assemblages in Lapland. Ecography 26:503–513

    Article  Google Scholar 

  • Tambs-Lyche H (1967) Notes on the distribution of some Arctic spiders. Astarte 28:1–13

    Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Thompson B, Ball OJ-P, Fitzgerald BM (2015) Niche partitioning in two coexisting species of Pahoroides (Araneae: Synotaxidae) NZ. J Zool 42:17–26

    Google Scholar 

  • Tolbert WW (1975) The effects of slope exposure on arthropod distribution patterns. Am Midl Nat 94:38–53

    Article  Google Scholar 

  • Topping CJ, Sunderland KD (1992) Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J Appl Ecol 29:485–491

    Article  Google Scholar 

  • Uetz GW (1977) Coexistence in a guild of wandering spiders. J Anim Ecol 46:531–541

    Article  Google Scholar 

  • Uetz GW (1979) The influence of variation in litter habitats on spider communities. Oecologia 40:29–42

    Article  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S.4. Springer, New York

  • Williams G (1962) Seasonal and diurnal activity of harvestmen (Phalangida) and spiders (Araneida) in contrasted habitats. J Anim Ecol 31:21–42

    Article  Google Scholar 

  • Wirta HK, Hebert PDN, Kaartinen R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci USA 111:1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Spider Catalog (2017) World Spider Catalog. Natural History Museum Bern, http://wsc.nmbe.ch, version 17.5, Accessed 5 January 2017

Download references

Acknowledgements

We would like to thank the University of Tromsø (UiT) and the University Centre in Svalbard (UNIS) for the support of this project. The fieldwork in the summer of 2012 was supported by the Arctic Field Grant (AFG). We would like to thank the UNIS logistics team and Charmain Hamilton for assistance in the field. We also thank the Governor of Svalbard (Sysselmannen) for the permits given for fieldwork in Svalbard. We would also like to thank Arne Fjellberg and Elisabeth J. Cooper for their comments on a previous draft and the three anonymous reviewers for the suggestions that improved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Dahl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahl, M.T., Yoccoz, N.G., Aakra, K. et al. The Araneae of Svalbard: the relationships between specific environmental factors and spider assemblages in the High Arctic. Polar Biol 41, 839–853 (2018). https://doi.org/10.1007/s00300-017-2247-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2247-4

Keywords

Navigation