Skip to main content

Advertisement

Log in

Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The present study characterizes the spatial distribution of seaweed diversity on eight islands from the South Shetlands based on an updated taxonomic survey, discussing the higher number of species compared with previous studies and the possible relationships with environmental parameters. Seaweeds were sampled in Deception, Livingston, Halfmoon, Robert, Nelson, King George, Penguin, and Elephant Islands during the austral summer between 2010 and 2013 in intertidal and shallow subtidal zones. The taxonomic analyses evaluated morphological characteristics, reproductive structures, and molecular features. Physicochemical parameters of seawater were also monitored using standard analytical methods. A total of 104 species of benthic marine algae were identified (28 Phaeophyceae, 24 Chlorophyta, and 52 Rhodophyta), ~82% of all seaweeds taxa described to Antarctica, including six new records previously recorded only at lower latitudes, four confirmed taxa, and two putative new species. Spatial variation in species diversity was observed among the collecting sites, and Livingston and King George Islands showed the highest diversity among the islands. Deception, an area with geothermal activity and intense tourism, was dominated by opportunistic and broadly distributed filamentous green algae. Antarctic macroalgae diversity was higher than in previous studies, most likely due to more efficient techniques of sampling, and combined taxonomical methods. However, changes in the biogeographical distribution or introduction of some taxa, resulting from anthropogenic activities and/or climate changes, should be considered. Therefore, the higher number of taxa and the new records reported in this study suggest the need for long-term monitoring in the area for conservation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams NM (1994) Seaweeds of New Zealand: an illustrated guide. Canterbury University Press

  • Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res 113:1–27. doi:10.1029/2008GL035624

    Article  Google Scholar 

  • Boraso AL (2003) Algas marinas de la Patagonia: una guía ilustrada. Fundación de Historia Natural Félix de Azara. Argentina

  • Boraso de Zaixso A (2004) CHLOROPHYTA marinas de la Argentina Historia Natural (Segunda Serie) III:95–119. Argentina

  • Boraso de Zaixso A (2013) Elementos para el estudio de las macroalgas de Argentina, Con colaboración de J.M. Zaixso. In: ABD Zaixso (ed). Argentina

  • Clarke LJ, Robinson SA, Hua Q, Ayre DJ, Fink D (2012) Radiocarbon bomb spike reveals biological effects of Antarctic climate change. Global Change Biol 18:301–310. doi:10.1111/j.1365-2486.2011.02560.x

    Article  Google Scholar 

  • Clayton M (2003) Falkland Islands Seaweed Survey Shackleton Scholaship Fundation, Monash University, Victoria 3800, Australia

    Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149. doi:10.1007/s003000050116

    Article  Google Scholar 

  • Cormaci M, Furnari G, Scammacca B (1992) The Benthic Algal Flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar 35:541–552. doi:10.1515/botm.1992.35.6.541

    Google Scholar 

  • Deregibus D, Quartino ML, Campana GL, Momo FR, Wiencke C, Zacher K (2016) Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol 39:153–166. doi:10.1007/s00300-015-1679-y

    Article  Google Scholar 

  • Ducklow H et al (2013) West Antarctic Peninsula: an Ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203. doi:10.5670/oceanog.2013.62

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of Anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329

    Article  CAS  PubMed  Google Scholar 

  • Gallardo T, Pérez-Ruzafa IM, Flores-Moya A, Conde F (1999) New Collections of Benthic Marine Algae from Livingston and Deception Islands (South Shetland Islands) and Trinity Island (Bransfield Strait) Antarctica. Bot Mar 42:61–69. doi:10.1515/bot.1999.009

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2016) AlgaeBase. World-wide electronic publication. http://www.algaebase.org

  • Hall TA (1999) BioEdit: a user-friendly biological alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534. doi:10.1515/bot.2009.081

    Article  Google Scholar 

  • Hughes KA, Ashton GV (2016) Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls. Aquat Conserv Mar Freshw Ecosyst. doi:10.1002/aqc.2625

    Google Scholar 

  • John DM, Pugh PJA, Tittley I (1994) Observations on the benthic marine algal flora of South Georgia: a floristic and ecological analysis. Bull Nat Hist Museum 24:101–114

  • Lamb I, Zimmermann MH (1977) Benthic marine algae of the Antartctic Peninsula. In: Biology of the Antarctic Seas Antarctic Research Series, vol 24, p 4

  • Macaya EC et al (2005) Presence of sporophylls in floating Kelp rafts of Macrocystis spp. (PHAEOPHYCEAE) along the chilean pacific coast. J Phycol 41:913–922. doi:10.1111/j.1529-8817.2005.00118.x

    Article  Google Scholar 

  • Medeiros AS (2013) Macroalgae diversity of Admiralty Bay, King George Island, Antarctic Peninsula based on DNA barcoding and other molecular markers. Thesis. São Paulo University. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-24032014-090801/

  • Milstein D, Medeiros AS, Oliveira EC, Oliveira MC (2012) Will a DNA barcoding approach be useful to identify Porphyra species (Bangiales, Rhodophyta)? J Applied Phycol 24:837–845. doi:10.1007/s10811-011-9702-3

    Article  CAS  Google Scholar 

  • Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638. doi:10.1515/bot.2009.080

    Article  Google Scholar 

  • Mystikou A et al (2014) Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biol 37:1607–1619. doi:10.1007/s00300-014-1547-1

    Article  Google Scholar 

  • Nelson WA (2012) Phylum Rhodophyta: red algae. In: Gordon DP (ed) New Zeland inventory of biodiversity. Canterbury University Press, Christchurch

    Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647. doi:10.1007/s00300-009-0663-9

    Article  Google Scholar 

  • Orsi AH, Whitworth T, Nowlin Jr WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current Deep Sea Research 42:641–673. doi:10.1016/0967-0637(95)00021W

  • Pellizzari FM, Oliveira MC, da Silva Medeiros A, Yokoya NS, Oliveira EC (2013) Morphology, ontogeny, and phylogenetic position of Gayralia brasiliensis sp. nov. (Ulotrichales, Chlorophyta) from the southern coast of Brazil. Bot Mar 56:197–205. doi:10.1515/bot-2012-0197

    Article  Google Scholar 

  • Pibernat RA, Ellis-Evans C, Hinghofer-Szalkay HG (2007) Life in extreme environments. Springer, Netherlands. doi:10.1007/978-1-4020-6285-8

    Google Scholar 

  • Pritchard HD, Ligtenberg SR, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. doi:10.1038/nature10968

    Article  CAS  PubMed  Google Scholar 

  • Quartino ML, Zaixso HE, Boraso de Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Bot Mar 48:187–197. doi:10.1515/bot.2005.029

    Article  Google Scholar 

  • Ramirez ME (1982) Nuevos registros de algas marinas para Antofagasta (Norte de Chile). Boletín Museo de Historia Natural de Chile 39: 11–26

  • Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la costa temperada del pacífico de Sudamérica. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile

  • Ricker RW (1987) Taxonomy and Biogeography of Macquarie Island Seaweeds. British Museum (Natural History), London

  • Sanches PF, Pellizzari FM, Horta PH (2016) Multivariate analyses of Antarctic and sub-Antarctic seaweed distribution patterns: An evaluation of the role of the Antarctic Circumpolar Current. J Sea Res 110:29–38. doi:10.1016/j.seares.2016.02.002

    Article  Google Scholar 

  • Schoenrock KM, Amsler CD, McClintock JB, Baker BJ (2015) Life history bias in endophyte infection of the Antarctic rhodophyte. Iridaea cordata Bot Mar 58:1–8. doi:10.1515/bot-2014-0085

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability J Geophys Res 113. doi:10.1029/2007jc004269

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of alga-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Valdivia N, Diaz MJ, Holtheuer J, Garrido I, Huovinen P, Gomez I (2014) Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PloS one 9(6):e100714. doi:10.1371/journal.pone.0100714

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasquez JA, Guerra N (1996) The use of seaweeds as bioindicators of natural and anthropogenic contaminants in northern Chile. Hydrobiol 326:327–333. doi:10.1007/bf00047826

    Article  Google Scholar 

  • Vinogradova KL (1984) Ad flora chlorophytum ex antarctide. Novosti Sistematiki Nizshikh Rastenii Novitates Systematicae Plantarum non Vascularium 20:10–18

  • Wells E, Brewin P, Brickle P (2011) Intertidal and Subtidal Benthic Seaweed diversity of South Georgia. Norfolk, UK

  • Wiencke C, Amsler CD (2012) Seaweeds and their Communities in Polar Regions. Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer, Germany

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic Seaweeds. In: Wagele JW (ed) Synopses of the Antarctic benthos. Lichtensein, Germany

  • Wiencke C, Dieck IT (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 24:157–170

    Article  Google Scholar 

  • Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz Cd (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507. doi:10.1515/bot.2009.072

    Article  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490. doi:10.1515/bot.2009.082

    Article  Google Scholar 

  • Zaneveld JS (1966) Lola irregularis (Chlorophyta-Cladophoraceae): a new species from the Ross Sea, Antarctica. J Phycol 2:45–47

    Article  CAS  PubMed  Google Scholar 

  • Zielinski K (1990) Bottom macroalgae of Admiralty Bay (King George Island, South Shetland Island, Antarctic). Polar Res 11:95–131

    Google Scholar 

Download references

Acknowledgements

We thank PROANTAR (Brazilian Antarctic Program 557030/2009-9 and 407588/2013-2), the Brazilian Navy (Polar Ship Almirante Maximiano—H41), the Brazilian Air Force, MMA (Ministry of Environment), MCTI (Ministry of Science, Technology and Innovation), CNPq (National Council of Research and Development), Araucaria Foundation of Paraná State, and FAPESP (Foundation of Research Support from São Paulo State).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pellizzari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellizzari, F., Silva, M.C., Silva, E.M. et al. Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol 40, 1671–1685 (2017). https://doi.org/10.1007/s00300-017-2092-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2092-5

Keywords

Navigation