Skip to main content

Advertisement

Log in

Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the early 1960s, the population of White Sea marine three-spined stickleback (Gasterosteus aculeatus), a key forage fish, declined drastically, and the species almost completely disappeared from catches. The population started to recover in the late 1990s, and its abundance has increased exponentially since then. Using contemporary and historical data, we contrast the age structure of spawning stock and fish growth before and after the population decline. Most stickleback spawners in 2009–2011 were 2 and 3 years old, with the 3-year-old fish being more abundant. The proportion of 2-year-old fish in recent catches is higher than that 50 years ago, indicating some rejuvenation of the population after the prolonged decline. Moreover, White Sea sticklebacks in the present population grow faster than those in the 1950s. The observed shifts are concurrent with the long-term changes in the temperature regime in the coastal areas of the White Sea, which determine zooplankton abundance and the duration of the feeding season of fish. The variation in life-history traits among both anadromous and marine stickleback populations within a distribution range was examined. The stickleback showed a considerable interpopulation variation in growth, longevity and age/size at maturity, which appeared generally related to thermal conditions at the marine feeding areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel’-Malek SA (1963) Foraging of the adult three-spined stickleback (Gasterosteus aculeatus L.) in the Kandalaksha Bay of the White Sea. Nauchnye Doklady Vysshey Shkoly 3:31–36 (in Russian)

    Google Scholar 

  • ACIA (2004) Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press (www.acia.uaf.edu)

  • Aguirre WE, Akinpelu O (2010) Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus. J Fish Biol 77:802–821

    Article  CAS  PubMed  Google Scholar 

  • Aguirre WE, Ellis KE, Kusenda M, Bell MA (2008) Phenotypic variation and sexual dimorphism in anadromous three-spine stickleback: implications for postglacial adaptive radiation. Biol J Linn Soc 95:465–478

    Article  Google Scholar 

  • Aneer G (1973) Biometric characteristics of the three-spined stickleback (Gasterosteus aculeatus L.) from the Northern Baltic Proper. Zool Scr 2:157–162

    Article  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Baker JA (1994) Life history variation in female threespine stickleback. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford, pp 146–187

    Google Scholar 

  • Baker JA, Foster SA, Heins DC, Bell MA, King RW (1998) Variation in female life-history traits among Alaskan populations of the threespine stickleback, Gasterosteus aculeatus L. (Pisces: Gasterosteidae). Biol J Linn Soc 63:141–159

    Google Scholar 

  • Baker JA, Heins DC, Foster SA, King RW (2008) An overview of life-history variation in female threespine stickleback. Behaviour 145:579–602

    Article  Google Scholar 

  • Bell MA, Foster SA (1994) Introduction to the evolutionary biology of the threespine stickleback. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford, pp 1–27

    Google Scholar 

  • Berger V, Naumov A, Zubaha M, Usov N, Smolyar I, Tatusko R, Levitus S (2003) 36-Year time series (1963–1998) of zooplankton, temperature and salinity in the White Sea. Saint Petersburg–Washington, 362 p

  • Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478

    Article  Google Scholar 

  • Bhattacharya CG (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23:115–135

    Article  CAS  PubMed  Google Scholar 

  • Bloum DM, Hagen DW (1990) Breeding ecology and evidence of reproductive isolation of a widespread stickleback fish (Gasterosteidae) in Nova Scotia, Canada. Biol J Linn Soc 39:195–217

    Article  Google Scholar 

  • Borg B, van Veen T (1982) Seasonal effects of photoperiod and temperature on the ovary of the three-spined stickleback, Gasterosteus aculeatus L. Can J Zool 60:3387–3393

    Article  Google Scholar 

  • Brey T (2001) Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2. http://www.thomas-brey.de/science/virtualhandbook

  • Bugaev VF (1992) Three-spined stickleback Gasterosteus aculeatus from Kamchatka River. Voprosy Ikhtiologii 32:71–82 (in Russian)

    Google Scholar 

  • Bugaev VF, Vronskiy BB, Zavarzina LO, Zorbidi ZhKh, Ostroumov AG, Tiller IV (2007) Fishes of Kamchatka River. KamchatNIRO, Petropavlovsk-Kamchatskiy (in Russian)

    Google Scholar 

  • Chronicle of nature by the Kandalaksha Reserve for 1948–2006. Book 2-52. Kandalaksha, Archives of Kandalaksha Nature Reserve (in Russian)

  • Coad BW, Power G (1973) Observations on the ecology and phenotypic variation of the threespine stickleback, Gasterosteus aculeatus L., 1758, and the blackspotted stickleback, G. wheatlandi Putnam, 1867 (Osteichthyes: Gasterosteidae) in Amory Cove, Quebec. Can Field-Nat 87:113–122

    Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703

    Article  Google Scholar 

  • Confer A, Vu V, Drevecky CJ, Aguirre WE (2012) Occurrence of Schistocephalus solidus in anadromous threespine stickleback. J Parasitol 98:676–678

    Article  CAS  PubMed  Google Scholar 

  • Crivelli AJ, Britton RH (1987) Life history adaptations of Gasterosteus aculeatus in a Mediterranean wetland. Environ Biol Fish 18:109–125

    Article  Google Scholar 

  • Dufresne F, FitzGerald GJ, Lachance S (1990) Age and size-related differences in reproductive success and reproductive costs in threespine sticklebacks (Gasterosteus aculeatus). Behav Ecol 1:140–147

    Article  Google Scholar 

  • Ershov PN (2010) Changes in the diet of the coastal cod Gadus morhua marisalbi in the Kandalaksha Gulf of the White Sea under conditions of increased abundance of three-spined stickleback Gasterosteus aculeatus. J Ichthyol 50:84–88

    Article  Google Scholar 

  • Gayanilo FC, Sparre P, Pauly D (2005) FAO-ICLARM Stock Assessment Tools II (FISAT II). Revised version. User’s Guide. FAO, Rome

    Google Scholar 

  • Genner MJ, Sims DW, Southward AJ, Budd GC et al (2010) Body size-dependent responses of a marine assemblage to climate change and fishing over a century-long scale. Glob Change Biol 16:517–527

    Article  Google Scholar 

  • Georgiev AP (2014) Processes of alterations of fish fauna in some Karelian lakes as a response to climate change. Nauchniye diskussii 1:27–33 (in Russian)

    Google Scholar 

  • Gillanders BM, Black BA, Meekan MG, Morrison MA (2012) Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Mar Biol 159:1327–1333

    Article  Google Scholar 

  • Hiddink JG, ter Hofstede R (2008) Climate induced increases in species richness of marine fishes. Glob Change Biol 14:453–460

    Article  Google Scholar 

  • Higuchi M, Goto A, Yamazaki F (1996) Genetic structure of threespine stickleback, Gasterosteus aculeatus, in Lake Harutori, Japan, with reference to coexisting anadromous and freshwater forms. Ichthyol Res 43:349–358

    Article  Google Scholar 

  • Hutchings JA (2005) Life history consequences of overexploitation to population recovery in Northwest Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:824–832

    Article  Google Scholar 

  • Jones JW, Hynes HBN (1950) The age and growth of Gasterosteus aculeatus, Pygosteus pungitius and Spinachia vulgaris, as shown by their otoliths. J Anim Ecol 19:59–73

    Article  Google Scholar 

  • Karve AD, von Hippel FA, Bell MA (2008) Isolation between sympatric anadromous and resident threespine stickleback species in Mud Lake, Alaska. Environ Biol Fish 81:287–296

    Article  Google Scholar 

  • Karve AD, Baker JA, von Hippel FA (2013) Female life-history traits of a species pair of threespine stickleback in Mud Lake, Alaska. Evol Ecol Research 15:171–187

    Google Scholar 

  • Kitamura T, Kume M, Takahashi H, Goto A (2006) Juvenile bimodal length distribution and sea-run migration of the lower modal group in the Pacific Ocean form of three-spined stickleback. J Fish Biol 69:1245–1250

    Article  Google Scholar 

  • Kitano J, Mori S, Peichel CL (2007) Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2:336–349

    Article  Google Scholar 

  • Kume M (2011) Clutch and egg sizes of two migratory forms of the threespine stickleback Gasterosteus aculeatus in eastern Hokkaido, Japan. Zool Stud 50:309–314

    Google Scholar 

  • Kuznetsov VV, Matveeva TA (1963) On biological specific features of zostera of the White Sea. In: Nikolaev II, Rusanova MN, Kuderskii LA (eds) Problems of use of commercial resources of the White Sea and inland water bodies of Karelia, Issue 1. Akad Nauk SSSR, Moscow, pp 145–149 (in Russian)

    Google Scholar 

  • L’Abee-Lund JH, Jonsson B, Jensen AJ, Saettem LM, Heggberget TG, Johnson BO, Naesje TF (1989) Latitudinal variation in life-history characteristics of sea-run migrant brown trout Salmo trutta. J Anim Ecol 58:525–542

    Article  Google Scholar 

  • Lajus DL, Ivanova TS, Shatskikh EV, Ivanov MV (2013) “Population Waves” of the three-spined stickleback in the White Sea. Priroda 4:43–52 (in Russian)

    Google Scholar 

  • Michaud WK, Dempson JB, Power M (2010) Changes in growth patterns of wild Arctic charr (Salvelinus alpinus (L.)) in response to fluctuating environmental conditions. Hydrobiologia 650:179–191

    Article  Google Scholar 

  • Mori S (1990) Two morphological types in the reproductive stock of three-spined stickleback, Gasterosteus aculeatus, in Lake Harutori, Hokkaido Island. Environ Biol Fish 27:21–31

    Article  Google Scholar 

  • Mukhomediyarov FB (1966) Three-spined stickleback (Gasterosteus aculeatus L.) from Kandalaksha Bay of the White Sea. Voprosy Ikhtiologii 6:454–467 (in Russian)

    Google Scholar 

  • Münzing J (1959) Biologie, Variabilität und Genetik von Gasterosteus aculeatus L. (Pisces) Untersuchungen im Elbegebiet. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 44:317–382 (in German)

    Article  Google Scholar 

  • Narver DW (1969) Phenotypic variation in threespine sticklebacks (Gasterosteus aculeatus) of the Chignik river system, Alaska. J Fish Res Board Can 26:405–412

    Article  Google Scholar 

  • Ottersen G, Hjermann D, Stenseth NC (2006) Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish Oceanogr 15:230–243

    Article  Google Scholar 

  • Patimar R, Najafabadi MH, Souraki MG (2010) Life history features of the nonindigenous three-spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) in the Gomishan wetland (southeast Caspian Sea, Iran). Turk J Zool 34:461–470

    Google Scholar 

  • Pennycuick L (1971) Quantitative effects of three species of parasites on a population of three-spined sticklebacks, Gasterosteus aculeatus. J Zool 165:143–162

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  CAS  PubMed  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  CAS  PubMed  Google Scholar 

  • Pichugin MYu, Pavlov DS, Savvaitova KA (2008) Life cycle and structure of populations of three-spined stickleback Gasterosteus aculeatus (fam. Gasterosteidae) in rivers of northwestern Kamchatka (with reference to the Utkholok river). J Ichthyol 48:151–161

    Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  Google Scholar 

  • Reist JD, Wrona FJ, Prowse TD, Power M, Dempson JB, Beamish RJ, King JR, Carmichael TJ, Sawatzky CD (2006) General effects of climate change on Arctic fishes and fish populations. Ambio 35:370–380

    Article  PubMed  Google Scholar 

  • Saat T, Turovski A (2003) Three-spined stickleback, Gasterosteus aculeatus L. In: Ojaveer E, Pihu E, Saat T (eds) Fishes of Estonia. Estonian Academy Publishers, Tallinn, pp 274–280

    Google Scholar 

  • Saimoto RK (1993) Life-history of marine threespine stickleback in Oyster lagoon, British Columbia. M.Sc. Thesis, University of British Columbia

  • Snyder RJ (1991) Migration and life histories of the threespine stickleback: evidence for adaptive variation in growth rate between populations. Environ Biol Fish 31:381–388

    Article  Google Scholar 

  • Stige LC, Ottersen G, Dalpadado P, Chan KS, Hjermann D, Lajus DL, Yaragina NA, Stenseth NC (2010) Direct and indirect climate forcing in a multispecies marine system. Proc Biol Sci 277:3411–3420

    Article  PubMed Central  PubMed  Google Scholar 

  • Stolarski JT (2013) Growth and energetic condition of Dolly Varden char in coastal arctic waters. Ph.D. Dissertation, University of Alaska Fairbanks

  • Thresher RE, Koslow JA, Morison AK, Smith DC (2007) Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proc Natl Acad Sci USA 104:7461–7465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Usov N, Kutcheva I, Primakov I, Martynova D (2013) Every species is good in its season: do the shifts in the annual temperature dynamics affect the phenology of the zooplankton species in the White Sea? Hydrobiologia 706:11–33

    Article  Google Scholar 

  • van Mullem PJ, van der Vlugt JC (1964) On the age, growth and migration of anadromous stickleback Gasterosteus aculeatus L. investigated in mixed populations. Archives Neerlandaises de Zoologie 16:111–139

    Article  Google Scholar 

  • Vebel A (1934) The White Sea stickleback as a target species. For the fishing industry of the North 10:176–188 (in Russian)

    Google Scholar 

  • von Biela VR, Zimmerman CE, Moulton LL (2011) Long-term increases in young-of-the-year growth of arctic cisco Coregonus autumnalis and environmental influences. J Fish Biol 78:39–56

    Article  Google Scholar 

  • von Hippel FA, Weigner H (2004) Sympatric anadromous-resident pairs of threespine stickleback species in young lakes and streams at Bering Glacier, Alaska. Behaviour 141:1441–1464

    Article  Google Scholar 

  • Wootton RJ (1984) A functional biology of sticklebacks. Croom Helm, London

    Book  Google Scholar 

  • Yershov PN (2010) Long-term changes in the food composition of the shorthorn sculpin Myoxocephalus scorpius (Linnaeus, 1758) in the Kandalaksha Bay of the White Sea. Vestnik SPBGU 2:55–62 (in Russian)

    Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues from the Saint Petersburg University—Dr. Tatiana Ivanova, Dr. Dmitry Lajus and Dr. Mikhail Ivanov—for their assistance in collecting the materials and for providing data on stickleback yearlings. We wish to thank the anonymous referees for valuable suggestions on improving the manuscript. This research was supported by the ongoing projects of the Russian Academy of Sciences, “Ecosystems of the White Sea and the adjacent Arctic seas: biodiversity dynamics under the changing climate” and “Life-history strategies and mechanisms of adaptations in fish and invertebrates in the Arctic seas” and by a RFBR Grant # 14-04-004466 to AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Yershov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yershov, P., Sukhotin, A. Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse. Polar Biol 38, 1813–1823 (2015). https://doi.org/10.1007/s00300-015-1743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1743-7

Keywords

Navigation