Skip to main content
Log in

Nitrogen uptake dynamics in landfast sea ice of the Chukchi Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The coastal Chukchi Sea has a particularly productive landfast ice ecosystem but is currently lacking direct measurements of nitrogen (N) cycling within the ice. Using stable isotopic tracers, we measured uptake and regeneration of ammonium and nitrate, along with primary and secondary production at three depths within landfast sea ice in the Chukchi Sea near Barrow, Alaska, during April 2011 and January 2012. These are the first data of N uptake and regeneration rates in landfast Arctic sea ice during spring and winter. Both inorganic and organic nutrient concentrations in the ice were generally higher than the water column, with the exception of phosphate, which may have limited production in certain sections of ice. Primary production at all ice depths was higher than the water column during April, but below the detection limit in January. Bacterial production in the bottom ice (0–10 cm from the ice–water interface) was consistently higher than the water column across seasons. Absolute uptake of ammonium was highest in the bottom ice and higher than absolute uptake of nitrate at all depth horizons except in the upper ice (30–40 cm from ice–water interface) during January. While N uptake rates in the ice were higher than the water column, nitrification rates were lower. Regeneration of ammonium and nitrate far exceeded uptake within the ice. The magnitude of N uptake and regeneration rates in landfast ice highlights the importance of the biological sea ice community to the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alio C (2008) Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol 10:2444–2454

    PubMed  Google Scholar 

  • Amon RMW, Fitznar H-P (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46:287–297

    CAS  Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486

    Google Scholar 

  • Arrigo KR, Mock T, Lizotte MP (2010) Primary producers and sea ice. In: Thomas DN, Dieckman GS (eds) sea ice, 2nd edn. Wiley-Blackwell, Oxford, pp 283–325

    Google Scholar 

  • Baer SE, Connelly TL, Sipler RE, Yager PL, Bronk DA (2014) Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer. Global Biogeochem Cycles 28:1455–1466. doi:10.1002/2013GB004765

  • Bano N, Hollibaugh JT (2000) Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivision of the class proteobacteria in the Arctic Ocean. Appl Environ Microbiol 66:1960–1969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boé J, Hall A, Qu X (2009) September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat Geosci 2:341–343

    Google Scholar 

  • Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J 6:11–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bronk DA, Steinberg DK (2008) Nitrogen regeneration. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd edn. Elsevier, San Diego, pp 385–467

    Google Scholar 

  • Bronk DA, Lomas MW, Glibert PM, Schukert KJ, Sanderson MP (2000) Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods. Mar Chem 69:163–178

    CAS  Google Scholar 

  • Brown ZW, Arrigo KR (2013) Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea. J Geophys Res Oceans 118:1–20. doi:10.1029/2012JC008034

    Google Scholar 

  • Brown TA, Belt ST (2012a) Closely linked sea ice-pelagic coupling in the Amundsen Gulf revealed by the sea ice diatom biomarker IP25. J Plankton Res 34:647–654

    CAS  Google Scholar 

  • Brown TA, Belt ST (2012b) Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: direct evidence for a sea ice diatom diet in Arctic heterotrophs. Polar Biol 35:131–137

    Google Scholar 

  • Brzezinski MA (1987) Colorimetric determination of nanomolar concentrations of ammonium in seawater using solvent extraction. Mar Chem 20:277–288

    CAS  Google Scholar 

  • Christman GD, Cottrell MT, Popp BN, Gier E, Kirchman DL (2011) Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic Ocean in summer and winter. Appl Environ Microbiol 77:2026–2034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cochlan WP, Bronk DA (2001) Nitrogen uptake kinetics in the Ross Sea, Antarctica. Deep-Sea Res Part II 48:4127–4153

    CAS  Google Scholar 

  • Collins RE, Deming JW (2011) Abundant dissolved genetic material in Arctic sea ice part I: extracellular DNA. Polar Biol 34:1819–1830

    Google Scholar 

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841

    PubMed Central  CAS  PubMed  Google Scholar 

  • Connelly TL, Baer SE, Cooper JT, Bronk DA, Wawrik B (2014) Urea uptake and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and winter seasons. Appl Environ Microbiol 80:6013–6022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conover RJ, Mumm N, Bruecker P, MacKenzie S (1999) Sources of urea in arctic seas: seasonal fast ice? Mar Ecol Prog Ser 179:55–69

    CAS  Google Scholar 

  • Cota GF, Anning JL, Harris LR, Harrison WG, Smith REH (1990) Impact of ice algae on inorganic nutrients in seawater and sea ice in Barrow Strait, NWT, Canada, during Spring. Can J Fish Aquat Sci 47:1402–1415

    CAS  Google Scholar 

  • Cota GF, Pomeroy LR, Harrison WG, Jones EP, Peters F, Sheldon WM Jr, Weingartner TR (1996) Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar Ecol Prog Ser 135:247–258

    Google Scholar 

  • Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–317

    Google Scholar 

  • Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckman GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Oxford, pp 247–282

    Google Scholar 

  • Dickson M-L, Wheeler PA (1995) Ammonium uptake and regeneration rates in a coastal upwelling regime. Mar Ecol Prog Ser 121:239–248

    CAS  Google Scholar 

  • Dudek N, Brzezinski MA, Wheeler PA (1986) Recovery of ammonium nitrogen by solvent extraction for the determination of relative 15N abundance in regeneration experiments. Mar Chem 18:59–69

    CAS  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    CAS  Google Scholar 

  • Dugdale RC, Wilkerson FP (1986) The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations. Limnol Oceanogr 31:673–689

    CAS  Google Scholar 

  • Dupont F (2012) Impact of sea-ice biology on overall primary production in a biophysical model of the pan-Arctic Ocean. J Geophys Res 117:C00D17. doi:10.1029/2011jc006983

    Google Scholar 

  • Eddie B, Juhl A, Krembs C, Baysinger C, Neuer S (2010) Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice. Environ Microbiol 12:797–809

    CAS  PubMed  Google Scholar 

  • Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: growth, microstructure, and properties of sea ice. In: Thomas DN, Dieckman GS (eds) sea ice. Blackwell Science Ltd., Oxford, pp 22–81

    Google Scholar 

  • Eronen-Rasimus E, Kaartokallio H, Lyra C, Autio R, Kuosa H, Dieckmann GS, Thomas DN (2014) Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment. MicrobiologyOpen 3:139–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forest A et al (2011) Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr 91:410–436

    Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frankenstein G, Garner R (1967) Equations for determining the brine volume of sea ice from −0.5°C to −22.9°C. J Glaciol 6:943–944

    CAS  Google Scholar 

  • Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 4:237–239

    Google Scholar 

  • Glibert PM, Lispschultz F, McCarthy JJ, Altabet MA (1982) Isotope dilution models of uptake ammonium by marine plankton. Limnol Oceanogr 27:639–650

    CAS  Google Scholar 

  • Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241

    CAS  PubMed  Google Scholar 

  • Gosselin M, Lavasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res Part II 44:1623–1644

    CAS  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Res Part II 56:1201–1212

    CAS  Google Scholar 

  • Gradinger R, Ikävalko J (1998) Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. J Plankton Res 20:871–886

    Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Google Scholar 

  • Horner R, Schrader GC (1982) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    CAS  Google Scholar 

  • Harrison WG, Cota GF, Smith REH (1990) Nitrogen utilization in ice algal communities of Barrow Strait, Northwest Territories, Canada. Mar Ecol Prog Ser 67:275–283

    Google Scholar 

  • Helmke E, Weyland H (1995) Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar Ecol Prog Ser 117:269–287

    Google Scholar 

  • Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18

    CAS  Google Scholar 

  • Johnson KM, Sieburth JM, Williams PJl, Brändström L (1987) Coulometric total carbon dioxide analysis for marine studies: automation and calibration. Mar Chem 21:117–133

  • Jones KA, Ingham M, Eicken H (2012) Modeling the anisotropic brine microstructure in first-year Arctic sea ice. J Geophys Res 117:C02005. doi:10.1029/2011JC007607

    Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming W (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaartokallio H, Søgaard DH, Norman L, Rysgaard S, Tison J-L, Delille B, Thomas DN (2013) Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice. Aquat Microb Ecol 71:57–73

    Google Scholar 

  • Keil RG, Kirchman DL (1991) Contribution of dissolved free amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton. Mar Ecol Prog Ser 71:1–10

    Google Scholar 

  • Kirchman DL (2000) Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 261–288

    Google Scholar 

  • Kirchman DL, K’nees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirchman DL, Elifantz H, Dittel AI, Malmstrom RR, Cottrell MT (2007) Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol Oceanogr 52:495–507

    CAS  Google Scholar 

  • Kirchman DL, Hill V, Cottrell MT, Gradinger R, Malmstrom RR, Parker A (2009) Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep-Sea Res Part II 56:1237–1248

    CAS  Google Scholar 

  • Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12:1132–1143

    CAS  PubMed  Google Scholar 

  • Koroleff F (1983) Determination of nutrients. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, New York, pp 125–187

    Google Scholar 

  • Krell A, Ummenhofer C, Kattner G, Naumov A, Evans D, Dieckman GS, Thomas DN (2003) The biology and chemistry of land fast ice in the White Sea, Russia—a comparison of winter and spring conditions. Polar Biol 26:707–719

    Google Scholar 

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80

    Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res Part I 49:2163–2181

    CAS  Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci USA 108:3653–3658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kristiansen S, Syvertsen EE, Farbrot T (1992) Nitrogen uptake in the Weddell Sea during late winter and spring. Polar Biol 12:245–251

    Google Scholar 

  • Kristiansen S, Farbrot T, Kuosa H, Myklestad S, von Quillfeldt CH (1998) Nitrogen uptake in the infiltration community, an ice algal community in Antarctic pack-ice. Polar Biol 19:307–315

    Google Scholar 

  • Kuparinen J, Autio R, Kaartokallio H (2011) Sea ice bacterial growth rate, growth efficiency and preference for inorganic nitrogen sources in the Baltic Sea. Polar Biol 34:1361–1373

    Google Scholar 

  • Lee SH, Whitledge TE, Kang S-H (2008) Carbon uptake rates of sea ice algae and phytoplankton under different light intensities in a landfast sea ice zone, Barrow, Alaska. Arctic 61:281–291

    Google Scholar 

  • Lipschultz F (2008) Isotope tracer methods for studies of the marine nitrogen cycle. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment. Elsevier, San Diego, pp 1345–1384

    Google Scholar 

  • Lizotte MP (2003) The microbiology of sea ice. In: Thomas DN, Dieckman GS (eds) sea ice. Blackwell, Oxford, pp 184–210

    Google Scholar 

  • Lomas MW, Rumbley CJ, Glibert PM (2000) Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance. J Plankton Res 22:2351–2366

    CAS  Google Scholar 

  • Loose B, Miller LA, Elliott S, Papakyriakou T (2011) Sea ice biogeochemistry and material transport across the frozen interface. Oceanography 24:202–218

    Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26

    CAS  Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619

    CAS  PubMed  Google Scholar 

  • Moore SE, Huntington HP (2008) Arctic marine mammals and climate change: impacts and resilience. Ecol Appl 18:S157–S165

    PubMed  Google Scholar 

  • Nguyen D, Maranger R (2011) Respiration and bacterial carbon dynamics in Arctic sea ice. Polar Biol 34:1843–1855

    Google Scholar 

  • Niemi A, Michel C, Hille K, Poulin M (2011) Protist assemblages in winter sea ice: setting the stage for the spring ice algal bloom. Polar Biol 34:1803–1817

    Google Scholar 

  • Nikrad MP, Cottrell MT, Kirchman DL (2012) Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter. Appl Environ Microbiol 78:2402–2409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olson RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074

    CAS  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford

    Google Scholar 

  • Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68:661–667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perrette M, Yool A, Quartly GD, Popova EE (2011) Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 8:515–524

    Google Scholar 

  • Pineault S, Tremblay J-É, Gosselin M, Thomas H, Shadwick E (2013) The isotopic signature of particulate organic C and N in bottom ice: key influencing factors and applications for tracing the fate of ice-algae in the Arctic Ocean. J Geophys Res Oceans 118:1–14. doi:10.1029/2012JC008331

    Google Scholar 

  • Pomeroy LR, Macko SA, Ostrom PH, Dunphy J (1990) The microbial food web in Arctic seawater: concentration of dissolved free amino acids and bacterial abundance and activity in the Arctic Ocean and in Resolute Passage. Mar Ecol Prog Ser 61:31–40

    CAS  Google Scholar 

  • Preston T, Zainal K, Anderson S, Bury SJ, Slater C (1998) Isotope dilution analysis of combined nitrogen in natural waters. III. Nitrate and nitrite. Rapid Commun Mass Spectrom 12:423–428

    CAS  Google Scholar 

  • Price NM, Harrison PJ (1987) Comparison of methods for the analysis of dissolved urea in seawater. Mar Biol 94:307–317

    CAS  Google Scholar 

  • Priscu JC, Sullivan CW (1998) Nitrogen metabolism in Antarctic fast-ice microalgal assemblages. In: Lizotte MP, Arrigo KR (eds) Antarctic sea ice: biological processes, interactions and variability, vol 73. Antarct. Res. Ser. AGU, Washington, pp 147–160. doi:10.1029/AR073p0147

    Google Scholar 

  • Priscu JC, Palmisano AC, Priscu LR, Sullivan CW (1989) Temperature dependence of inorganic nitrogen uptake and assimilation in Antarctic sea-ice microalgae. Polar Biol 9:443–446

    Google Scholar 

  • Priscu JC, Downes MT, Priscu LR, Palmisano AC, Sullivan CW (1990) Dynamics of ammonium oxidizer activity and nitrous oxide (N2O) within and beneath Antarctic sea ice. Mar Ecol Prog Ser 62:37–46

    CAS  Google Scholar 

  • Reay DS, Nedwell DB, Priddle J, Ellis-Evans JC (1999) Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Appl Environ Microbiol 65:2577–2584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volumes. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Renaud PE, Riedel A, Michel C, Morata N, Gosselin M, Juul-Pedersen T, Chiuchiolo A (2007) Seasonal variation in benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic? J Mar Syst 67:1–12

    Google Scholar 

  • Rich J, Gosselin M, Sherr E, Sherr B, Kirchman DL (1997) High bacterial production, uptake and concentrations of dissolved organic matter in the Central Arctic Ocean. Deep-Sea Res Part II 44:1645–1663

    CAS  Google Scholar 

  • Riedel A, Michel C, Gosselin M (2007a) Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie Shelf during the winter–spring transition. Aquat Microb Ecol 50:25–38

    Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2007b) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Mar Ecol Prog Ser 342:55–67

    CAS  Google Scholar 

  • Różańska M, Gosselin M, Poulin M, Wiktor JM, Michel C (2009) Influence of environmental factors on the development of bottom ice protist communities during the winter–spring transition. Mar Ecol Prog Ser 386:43–59

    Google Scholar 

  • Rysgaard S, Glud RN (2004) Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr 49:86–94

    CAS  Google Scholar 

  • Rysgaard S, Glud R, Sejr M, Blicher M, Stahl H (2008) Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol 31:527–537

    Google Scholar 

  • Sala M, Arrieta J, Boras J, Duarte C, Vaqué D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol 33:1683–1694

    Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264

    CAS  Google Scholar 

  • Sharp JH, Carlson CA, Peltzer ET, Castle-Ward DM, Savidge KB, Rinker KR (2002) Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Mar Chem 77:239–253

    CAS  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    CAS  PubMed  Google Scholar 

  • Smith REH, Gosselin M, Taguchi S (1997) The influence of major inorganic nutrients on the growth and physiology of high arctic ice algae. J Mar Syst 11:63–70

    Google Scholar 

  • Stoecker DK, Gustafson DE, Baier CT, Black MMD (2000) Primary production in the upper sea ice. Aquat Microb Ecol 21:275–287

    Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007gl029703

    Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027

    Google Scholar 

  • Thomas DN, Dieckman GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644

    CAS  PubMed  Google Scholar 

  • Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics. Polar Biol 15:477–483

    Google Scholar 

  • Thomas DN, Papadimitriou S, Michel C (2010) Biogeochemistry of sea ice. In: Thomas DN, Dieckman GS (eds) sea ice, 2nd edn. Wiley-Blackwell, Oxford, pp 425–467

    Google Scholar 

  • Tovar-Sánchez A, Duarte CM, Alonso JC, Lacorte S, Tauler R, Galbán-Malagón C (2010) Impacts of metals and nutrients released from melting multiyear Arctic sea ice. J Geophys Res 115:C07003. doi:10.1029/2009jc005685

    Google Scholar 

  • Tremblay C, Runge JA, Legendre L (1989) Grazing and sedimentation of ice algae during and immediately after a bloom at the ice-water interface. Mar Ecol Prog Ser 56:291–300

    Google Scholar 

  • Vincent WF (2010) Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 4:1087–1090

    PubMed  Google Scholar 

  • Ward BB (2008) Nitrification in marine systems. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd edn. Elsevier Inc., San Diego, pp 199–262

    Google Scholar 

  • Ward BB, Talbot MC, Perry MJ (1984) Contributions of phytoplankton and nitrifying bacteria to ammonium and nitrite dynamics in coastal waters. Cont Shelf Res 3:383–398

    Google Scholar 

  • Wells LE, Deming JW (2006) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121

    PubMed  Google Scholar 

  • Werner I, Ikävalko J, Schünemann H (2007) Sea-ice algae in Arctic pack ice during late winter. Polar Biol 30:1493–1504

    Google Scholar 

  • Wuchter C et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yentsch CS (1965) Distribution of chlorophyll and phaeophytin in the open ocean. Deep Sea Res Oceanogr Abstr 12:653–666

    Google Scholar 

Download references

Acknowledgments

This project was supported by National Science Foundation Grant # ARC-0909839 to DAB. TLC was supported by NSF Grant # ARC-0910252 to P. L. Yager. Many thanks to Q. N. Roberts, K. A. Sines, and C. M. Williams for their tireless efforts in the laboratory and P. L. Yager for use of her ice auger. This manuscript was greatly improved by the comments of three anonymous reviewers, along with D. L. Kirchman, M. W. Lomas, and D. K. Steinberg, who served on the dissertation committee of SEB. Special thanks go to R. E. Sipler, who endured the winter field sampling, along with many discussions that improved the manuscript. The field component of this work was made possible by the hard work and determination of Brower Frantz, Tony Kalaek and their team at UMIAQ. This paper is Contribution No. 3439 of the Virginia Institute of Marine Science, The College of William and Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Baer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baer, S.E., Connelly, T.L. & Bronk, D.A. Nitrogen uptake dynamics in landfast sea ice of the Chukchi Sea. Polar Biol 38, 781–797 (2015). https://doi.org/10.1007/s00300-014-1639-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1639-y

Keywords

Navigation