Skip to main content
Log in

Lipids in the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The daubed shanny, Leptoclinus maculatus, is a common fish species in Arctic and North Atlantic waters and has an important role in high-latitude ecosystems as a link between lower trophic levels and many fish, marine mammal and seabird species. Its biology and ecology have, however, remained largely unstudied. The primary aim of this study was to increase the knowledge about the daubed shanny by analysing total lipids, lipid-classes and the fatty acid composition of liver, muscle and female gonads in adults from the high Arctic archipelago of Svalbard. In female gonads, the triacylglycerols and wax esters in addition to cholesterol esters were dominant among the stored lipids. Triacylglycerols dominated in the liver, whereas structural lipids, such as phospholipids and cholesterols, were the most important lipids in muscles. Phosphatidylcholine and phosphatidylethanolamine were major phospholipids in all organs studied. The fatty acid spectrum of the investigated organs was characterized by a high amount of monounsaturated fatty acids, particularly in the liver. Polyunsaturated fatty acids, particularly 22:6(n-3) and 20:4(n-6), were prevalent in muscle tissues. The lipid and fatty acid spectra in the organs during this period of life are tightly connected with the activation of the liver metabolism and the storage of lipids in the developed female gonads. Lipid accumulation and distribution in gonads are transferred to optimal development of embryos and larvae in Arctic waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen WV (1976) Biochemical aspects of lipid storage and utilization in animals. Amer Zool 16:631–647

    CAS  Google Scholar 

  • Andriyashev AP (1954) Fishes of the northern seas of the U.S.S.R. AN USSR, Moscow, Leningrad

  • Arduini A (1996) High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies. J Lipid Res 37(2):684–689

    PubMed  CAS  Google Scholar 

  • Bell MV, Batty RS, Dick JR, Fretwell K, Navarro JC, Sargent JR (1995) Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 30:443–449

    Article  PubMed  CAS  Google Scholar 

  • Bell MV, Dick JR, Porter AEA (2001) Biosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in rainbow trout (Oncorhynchus mykiss). Lipids 36(10):1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA, Prokop’ev VD (1985) How does activity of membrane enzymes regulate? Biol Sci 3:5–13

    Google Scholar 

  • Boldyrev AA, Kaivarainen EI, Ilykha VA (2006) Biomembranology. KarRC RAS, Petrozavodsk

    Google Scholar 

  • Brodte E, Graeve M, Jacob U, Knust R, Pörtner H-O (2008) Temperature-dependent lipid levels and components in polar and temperate eelpout (Zoarcidae) fish. Fish Physiol Biochem 34:61–274

    Article  Google Scholar 

  • Buda C, Dey I, Balogh N, Horvath LI, Maderspach K, Juhasz M, Yeo YK, Farkas T (1994) Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimation. Proc Natl Acad Sci USA 91(17):8234–8238

    Article  PubMed  CAS  Google Scholar 

  • Cahu CL, Zambonino JL, Barbosa V (2003) Effect of dietary phospholipids level and phospholipids: neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet. British J Nutr 90:21–28

    Article  CAS  Google Scholar 

  • Cejas JR, Almansa E, Jerez S, Bolanos A, Felipe B, Lorenzo A (2004) Changes in lipid class and fatty acid composition during development in white seabream (Diplodus sargus) eggs and larvae. Compar Biochem Physiol B 2:209–216

    Article  Google Scholar 

  • Christie WW http://www.lipidlibrary.com

  • Coleman RM (1992) Reproductive biology and female parental care in the cockscomb prickleback, Anoplarchus purpurescens (Pisces: Stichaeidae). Environ Biol Fish 35:177–186

    Article  Google Scholar 

  • Cossins AR, Prosser CL (1978) Evolutionary adaptation of membranes to temperature. Proc Natl Acad Sci USA 75(4):2040–2043

    Article  PubMed  CAS  Google Scholar 

  • Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H, Millar R-M (2003) Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar Ecol Prog Ser 256:257–269

    Article  CAS  Google Scholar 

  • Desvilettes C, Bourdier G, Breton JC (1997) Changes in lipid class and fatty acid composition during development in pike (Esox lucius L) eggs and larvae. Fish Physiol Biochem 16:381–393

    Article  CAS  Google Scholar 

  • Dyatlovitskaya EV, Bezuglov VV (1998) Lipids as bioeffectors. Introduction. Biochemistry 63(1):3–6

    Google Scholar 

  • Engelbrecht FM, Mari F, Anderson JT (1974) Cholesterol determination in serum. A rapid direction method. S Afr Med J 48:250–356

    PubMed  CAS  Google Scholar 

  • Falk-Petersen S, Falk-Petersen I-B, Sargent JR (1986a) Structure and function of an unusual lipid storage organ in the Arctic fish Lumpenus maculatus fries. Sarsia 71:1–6

    CAS  Google Scholar 

  • Falk-Petersen I-B, Falk-Petersen S, Sargent JR (1986b) Nature, origin and role of wax esters and tryacylglycerols in teleost fish from northern Norwegian fjords. Proc 19th Europ Mar Biol Symp Plymouth, 234–235

  • Falk-Petersen S, Sargent JR, Fox C, Falk-Petersen I-B, Haug T, Kjørsvik E (1989) Lipids in Atlantic halibut (Hippoglossus hippoglossus) eggs from planktonic samples in Northern Norway. Mar Biol 101:553–556

    Article  CAS  Google Scholar 

  • Fodor E, Johnes RH, Buda CS, Kitajka K, Dey I, Farkas T (1995) Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Gershanovich AD, Lapin VI, Shatunovskii MI (1991) Specifics of lipid metabolism in fishes. Biol Bull Rev 3(2):207–219

    Google Scholar 

  • Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9(2):155–167

    PubMed  CAS  Google Scholar 

  • Gnyubkina VP, Markevich AL (2008) Reproduction and development of Pholis picta (Perciformes: Pholidae) and Opisthocentrus zonope (Stichaeidae). J Ichthyol 48(7):525–532

    Article  Google Scholar 

  • Gordon JDM, Duncan JAR (1979) Some notes on the biology of the snake blenny, Lumpenus lampretaeformis on the west coast of Scotland. J Mar Biol Ass UK 59:413–419

    Article  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  • Graeve M, Lundberg M, Böer M, Kattner G, Hop H, Falk-Petersen S (2008) The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780). Mar Biol 153:643–651

    Article  CAS  Google Scholar 

  • Gribanov GA (1991) Structure specifics and biological role of lysophospholipids. Voprosy Medicinskoi Chimii 37(4):2–16

    CAS  Google Scholar 

  • Hansen ØJ, Puvanendran V, Jøstensen JP, Ous C (2011) Effects of dietary levels and ratio of phosphatidylcholine (PC) and phosphatidylinositol (PI) on the growth, survival and deformity levels of Atlantic cod larvae and early juveniles. Aquac Res 42: 1026–1033.

    Google Scholar 

  • Hanson JM, Chouinard GA (2002) Diet of Atlantic cod in the southern Gulf of St. Lawrence as an index of ecosystem change, 1959–2000. J Fish Biol 60:902–922

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University press, NY

    Google Scholar 

  • Hop H, Graham M, Trudeau VL (1995) Spawning energetics of Arctic cod (Boreogadus saida) in relation to seasonal development of the ovary and plasma sex steroid levels. Can J Fish Aquat Sci 52:541–550

    Article  CAS  Google Scholar 

  • Ipatova OM, Torkhovskaya TI, Zakharova TS, Khalilov EM (2006) Sphingolipids and cell signaling: involvement in apoptosis and atherogenesis. Biochemistry (Moscow) 71(7):713–722

    Article  CAS  Google Scholar 

  • Kattner G, Hagen W (2009) Lipids in marine copepods: latitudinal characteristics and perspectives in global warming. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, NY, pp 257–281

    Chapter  Google Scholar 

  • Kattner G, Hagen W, Lee RF, Campbell R, Deibel D, Falk-Petersen S, Graeve M, Hansen BW, Hirche H-J, Jonasdottir SH, Madsen ML, Mayzaud P, Muller-Navarra D, Nichols PD, Paffenhofer GA, Pond D, Saito H, Stubing D, Virtue P (2007) Perspectives on marine zooplankton lipids. Can J Fish Aquat Sci 64:1628–1639

    Article  CAS  Google Scholar 

  • Keats DW, Steele DH, Green JM, Martel GM (1993) Diet and population size structure of the Arctic shanny, Stichaeus punctatus (Pisces: Stichaeidae), at sites in eastern Newfoundland and the eastern Arctic. Environ Biol Fish 37:173–180

    Article  Google Scholar 

  • Kolomiytseva IK, Perepelkina NI, Patrushev IV, Popov VI (2003) Role of lipids in the assembly of endoplasmic reticulum and dictyosomes in neuronal cells from the cerebral cortex of Yakutian ground squirrel (Citellus undulates) during hibernation. Biochemistry (Moscow) 68(7):783–795

    Article  CAS  Google Scholar 

  • Kreps EM (1981) Lipids of cell membrane. Evolution of brain lipids. Adaptations function of lipids. Nauka, Leningrad

    Google Scholar 

  • Kyushin K (1990) Embryonic development and larvae of Long shanny, Stichaeus grigorjewi Herzenstein. Bull Fac Fish Hokkaido Univ 41(1):13–17

    Google Scholar 

  • Labansen AL, Lydersen C, Haug T, Kovacs KM (2007) Spring diet of ringed seals (Phoca hispida) from northwestern Spitsbergen, Norway. ICES J Mar Sci 64:1246–1256

    Google Scholar 

  • Lapin VI, Shatunovskii MI (1981) Content features, physiological and ecological importance of fish lipids. Biol Bull Rev 92(6):380–394

    CAS  Google Scholar 

  • Latyshev NA, Khardin AS, Kiyashko SI (2001) Fatty acids as markers of starfish food sources. Doklady Biol Sci 380:489–491

    Article  CAS  Google Scholar 

  • LeDrew BR, Green JM (1975) Biology of the radiated shanny Ulvaria subbifurcata Stirer in Newfoundland (Pisces: Stichaeidae). J Fish Biol 7:485–495

    Article  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Lund ED, Sidell BD (1992) Neutral lipid compositions of Antarctic fish tissues may reflect use of fatty acyl substrates by catabolic systems. Mar Biol 112:377–382

    Article  CAS  Google Scholar 

  • Markevich AI (2004) Pattern of night activity in the Prickleback fish Ernogrammus hexagrammus. Russ J Mar Biol 30(3):204–208

    Article  Google Scholar 

  • Mayzaud P, Boutoute M, Perissinotto R, Nichols P (2007) Polar and neutral lipid composition in the pelagic tunicate Pyrosoma atlanticum. Lipids 42:647–657

    Article  PubMed  CAS  Google Scholar 

  • Meyer Ottesen CA, Hop H, Christiansen JS, Falk-Petersen S (2011) Early life history of daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Mar Biodiv 41:383–394

    Article  Google Scholar 

  • Meyer Ottesen CA, Hop H, Christiansen JS, Falk-Petersen (2013) Growth of the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Polar Biol (in press)

  • Miki T, Yoshida H, Amaoka K (1987) Rare stichaeid fish, Pseudalectrias tarasovi. Bull Fac Fish Hokkaido Univ 38(1):1–13

    Google Scholar 

  • Mourente G, Vazquez R (1996) Changes in content of total lipid, lipid classes and their fatty acids of developing eggs and unfed larvae of the Senegal sole, Solea senegalensis Kaup. Fish Physiol Biochem 15(3):221–235

    Article  CAS  Google Scholar 

  • Murzina SA, Meyer Ottesen CA, Falk-Petersen S, Hop H, Nemova NN, Poluektova OG (2012) Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters. Fish Physiol Biochem 38(5):1393–1407

    Article  PubMed  CAS  Google Scholar 

  • Murzina SA, Nefedova ZA, Falk-Petersen S, Ripatti PO, Ruokolainen TR, Pekkoeva SN, Nemova NN (2013) Lipid status of the two high latitude fish species, Leptoclinus maculatus and Lumpenus fabricii. Int J Mol Sci 14(4):7048–7060

    Article  PubMed  CAS  Google Scholar 

  • Nash RDM (1980) Laboratory observations on the burrowing of the snake blenny, Lumpenus lampretaeformis (Walbaum), in soft sediment. J Fish Biol 16:639–648

    Article  Google Scholar 

  • Osadchaya LM, Galkina OV, Eshenko ND (2004) Effect of corazol on Na+, K+-ATP-ase activity and intensity of lipid peroxidation in neurons and neuroglia. Biochem Mol Biol Base Physiol Funct 37:220–226

    Google Scholar 

  • Perevozchikov AP (2008) Sterols and their transport in animal development. Russ J Dev Biol 39(3):131–150

    Article  CAS  Google Scholar 

  • Petursdottir H, Gislason A, Falk-Petersen S (2008) Lipid classes and fatty acid compositions of muscle, liver and skull oil in deep-sea redfish Sebastes mentella over the Reykjanes Ridge. Fish Biol 73:2485–2496

    Article  CAS  Google Scholar 

  • Prokazova NV, Zvezdina ND, Korotaeva AA (1998) Effect of lysophosphatidylcholine on transmembrane signal transduction. Biochemistry (Moscow) 63(1):31–38

    CAS  Google Scholar 

  • Rabinovich AL, Ripatti PO (1994) Polyunsaturated carbon chins of lipids: structure, properties, functions. Biol Bull Rev 114(5):581–594

    CAS  Google Scholar 

  • Rabinovich AL, Ripatti PO, Dashevskii BG (1985) Temperature dependence of the conformal characteristics of natural polyunsaturated hydrocarbon chains. Biophysics 30(5):871–877

    Google Scholar 

  • Rabinovich AL, Kornilov VV, Balabaev NK, Leermarkers AM, Filippov AV (2007) Properties of unsaturated phospholipid bilayers: effect of cholesterol. Biochem (Moscow) Suppl A Membr Cell Biol 1(4):343–357

    Google Scholar 

  • Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review. Aquaculture 155:103–115

    Article  CAS  Google Scholar 

  • Sargent JR (1995) Origins and functions of egg lipids: nutritional implications In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell, Oxford, pp 353–372

  • Sargent JR, Henderson RJ (1986) Lipids. In: Corner ED, O’Hara SCM (eds) The biological chemistry of marine copepods. Clarendon Press, Oxford, pp 59–108

    Google Scholar 

  • Sargent JR, Gatten RR, Merrett NR (1983) Lipids of Hoplostethus atlanticus and H. mediterraneus (Beryciformes: Trachichthyidae) from deep water to the west of Britain. Mar Biol 74:281–286

    Article  CAS  Google Scholar 

  • Schuurmans Stekhoven F, Bonting SL (1981) Transport adenosine triphosphatases. Physiol Rev 61:1–76

    PubMed  CAS  Google Scholar 

  • Scott WB, Scott MG (1988) Atlantic fishes of Canada. Can Bull Fish Aquat Sci 219:420–421

    Google Scholar 

  • Shiogaki M (1981) Notes on the life history of the stichaeid fish Opisthocentrus tenuis. Jap J Ichthyol 28(3):319–328

    Google Scholar 

  • Shiogaki M (1982) Life history of the stichaeid fish, Opisthocentrus ocellatus. Jap J Ichthyol 29(1):77–85

    Google Scholar 

  • Shiogaki M (1987) Life history on the stichaeid fish Alectrias benjamini. Sci Rep Aquac Cent Aomori Pref 5:9–20

    Google Scholar 

  • Sidell BD, Hazel JR (2002) Triacylglycerol lipase actives in tissue of Antarctic fishes. Polar Biol 25:517–522

    Article  Google Scholar 

  • Sidell BD, Crokett EL, Driezdic WR (1995) Antarctic fish tissues preferably catabolise monoenoic fatty acids. J Exp Zool 271:73–81

    Google Scholar 

  • Sidorov VS, Lisenko EI, Bolgova OM, Nefedova ZA (1972) Lipids in fishes. I. Methods. Tissues peculiarities of Coregonus albula L. In: Sidorov VS (ed) Salmonidae in Karela Republic Petrozavodsk, Petrozavodsk, pp 150–161

  • Smith C, Wotton RJ (1999) Parental energy expenditure of the male three-spined stickleback. J Fish Biol 54:1132–1136

    Article  Google Scholar 

  • Struchkov VA, Strazhevskaya NB (1988) The composition of DNA-bound lipids in regenerating rat liver. Biochemistry (Moscow) 53:1449–1454

    CAS  Google Scholar 

  • Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190

    Article  PubMed  CAS  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in Teleost fish. Reviews in Fish Sci 12(2):107–182

    Article  Google Scholar 

  • Tokranov AM, Orlov AM (2004) Biology of Longfin prickleback Bryozoichthys lysimus (Stichaeidae) from Pacific waters of Northern Kuril Islands. J Ichthyol 44(5):366–370

    Google Scholar 

  • Veslansky PV, Kostetsky EY (2008) Lipids of marine cold-water fishes. Russ J Mar Biol 34(1):51–56

    Article  Google Scholar 

  • Walsh DE, Banasik OJ, Gilles KA (1965) Thin-layer chromatographic separation and colorimetric analysis of barley or malt lipid classes and their fatty acids. J Chromatogr 17:278–287

    Article  PubMed  CAS  Google Scholar 

  • Wiegand MD (1996) Composition, accumulation and utilization of yolk lipids in teleost fish. Rev Fish Biol Fish 6:259–286

    Article  Google Scholar 

  • Wold PA, Hoehne-Peitan K, Cahu CI, Zambonibo JL, Rainuzzo J, Kjørsvik E (2009) Comparison of dietary phospholipids and neutral lipids: effects on gut, liver and pancreas histology in Atlantic cod (Gadus morhua L.). Aquac Nutr 15:73–84

    Article  CAS  Google Scholar 

  • Wourms JP, Evans D (1974) The annual reproductive cycle of the black prickleback, Xiphister atropurpureus, a pacific coast blennoid fish. Can J Zool 52(7):795–802

    Article  PubMed  CAS  Google Scholar 

  • Zabelinsky SA, Chebotareva MA, Brovcina NB, Krivchenko AI (1995) About “adaptation specialization” of content and conformation of fatty acids in membrane lipids in fish gills. J Evol Biochem Physiol 31(1):28–37

    Google Scholar 

Download references

Acknowledgments

This research was supported by the President of the Russian Federation Grants (NSh-1642.2012.4 and MK-666.2011.4; RFBR 11-04-00167-a), the Presidium of RAS Program of Fundamental Research (“The living nature: contemporary conditions and problems of development” project “Inventory of aquatic organisms communities in Arctic and sub-Arctic ecosystems in changing biotic and abiotic factors”) and the FCP (“Mechanisms of adaptation and sustainability of organisms and populations of plants and animals in the North (physiological, biochemical and molecular-genetic aspects)”). We are also grateful to the captain and the crew of R/V Jan Mayen, the TUNU-MAFIG Programme (University of Tromsø) for the possibility to participate thus on the “TUNU III cruise 2007”. The research was carried out as part of the “Ice Edge Programme” funded by Statoil through the Statoil-ARCTOS Arctic Research Programme (SAARP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Murzina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murzina, S.A., Nefedova, Z.A., Falk-Petersen, S. et al. Lipids in the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Polar Biol 36, 1619–1631 (2013). https://doi.org/10.1007/s00300-013-1381-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1381-x

Keywords

Navigation