Skip to main content
Log in

Metabolic fingerprinting of arctic copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Recent development in high-throughput unbiased analytical tools (transcriptomics, proteomics and metabolomics) has opened the possibility to assess a multitude of molecular endpoints in organisms. In the present work, we used a combination of metabolomics tools, proton nuclear magnetic resonance spectroscopy (1H-NMR) and liquid chromatography coupled with mass spectrometry (LC–MS),) and multivariate statistical analysis to identify species-specific metabolome fingerprints and species-specific metabolites in the three Arctic copepods Calanus finmarchicus, C. glacialis and C. hyperboreus. Principal component analysis separated the three species with high specificity and sensitivity, and some species-specific metabolites were putatively annotated. These tools can be used for future studies within basal biology, systems biology, bioprospecting and ecotoxicology. As a supplementary analytical tool to genetic analyses, species-specific metabolites have a potential to be used to separate closely related Arctic Calanus species from net hauls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnkvaern G, Daase M, Eiane K (2005) Dynamics of coexisting Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus populations in a high-Arctic fjord. Polar Biol 28:528–538

    Article  Google Scholar 

  • Astthorsson OS, Gislason A (2003) Seasonal variations in abundance, development and vertical distribution of Calanus finmarchicus, C-hyperboreus and C-glacialis in the East Icelandic Current. J Plankton Res 25:843–854

    Article  Google Scholar 

  • Bucklin A, Guarnieri M, Hill RS, Bentley AM, Kaartvedt S (1999) Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401:239–254

    Article  CAS  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21

    Article  CAS  Google Scholar 

  • Chauton MS, Optun OI, Bathen TF, Volent Z, Gribbestad IS, Johnsen G (2003) HR MAS H-1 NMR spectroscopy analysis of marine microalgal whole cells. Mar Ecol-Prog Ser 256:57–62

    Article  CAS  Google Scholar 

  • Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high-latitudes of the northern hemisphere. Hydrobiologia 167:127–142

    Article  Google Scholar 

  • Frost BW (1974) Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar Biol 26(1):77–99

    Google Scholar 

  • Gabrielsen TM, Merkel B, Søreide JE, Johansson-Karlsson E, Bailey A, Vogedes D, Nygård H, Varpe Ø, Berge J (2012) Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol 35:1621–1628

    Article  Google Scholar 

  • Hansen BH, Altin D, Hessen KM, Dahl U, Breitholtz M, Nordtug T, Olsen AJ (2008) Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea: Copepoda). Gen Comp Endocrinol 158:115–121

    Article  PubMed  CAS  Google Scholar 

  • Hansen BH, Altin D, Booth A, Vang S-H, Frenzel M, Sørheim KR, Brakstad OG, Størseth TR (2010) Molecular effects of diethanolamine exposure on Calanus finmarchicus (Crustacea: Copepoda). Aquat Toxicol 99:212–222

    Article  PubMed  CAS  Google Scholar 

  • Hansen BH, Altin D, Rørvik SF, Øverjordet IB, Olsen AJ, Nordtug T (2011) Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Sci Total Environ 409:704–709

    Article  PubMed  CAS  Google Scholar 

  • Hansen BH, Altin D, Øverjordet IB, Jager T, Nordtug T (2013) Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: effects on survival and biomarker response. Sci Total Environ 449:276–284

  • Hawes TC, Hines A, Viant MR, Bale JS, Worland MR, Convey P (2008) Metabolic fingerprint of cryo-stress in a freeze tolerant insect. Cryoletters 29:505–515

    PubMed  CAS  Google Scholar 

  • Hill RS, Allen LD, Bucklin A (2001) Multiplexed species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with an mtCOI gene tree for ten Calanus species. Mar Biol 139:279–287

    Article  CAS  Google Scholar 

  • Hirche HJ, Kosobokova K (2007) Distribution of Calanus finmarchicus in the northern North Atlantic and Arctic Ocean—expatriation and potential colonization. Deep-Sea Res Pt II 54:2729–2747

    Article  Google Scholar 

  • Hirche HJ, Mumm N (1992) Distribution of dominant copepods in the Nansen basin, Arctic-ocean, in summer. Deep-Sea Res 39:S485–S505

    Article  Google Scholar 

  • Hjorth M, Nielsen TG (2011) Oil exposure in a warmer Arctic: potential impacts on key zooplankton species. Mar Biol 158:1339–1347

    Article  Google Scholar 

  • Hjorth M, Hansen JH, Camus L (2010) Short-term effects of sucralose on Calanus finmarchicus and Calanus glacialis in Disko Bay, Greenland. Chem Ecol 26:385–393

    Article  CAS  Google Scholar 

  • Huseby S, Degerlund M, Zingone A, Hansen E (2012) Metabolic fingerprinting reveals differences between northern and southern strains of the cryptic diatom Chaetoceros socialis. Eur J Phycol 47:480–489

    Article  Google Scholar 

  • Iguchi T, Watanabe H, Katsu Y (2006) Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ Health Perspect 114:101–105

    Article  PubMed  Google Scholar 

  • Jensen LK, Carroll J (2010) Experimental studies of reproduction and feeding for two Arctic-dwelling Calanus species exposed to crude oil. Aquat Biol 10:261–271

    Article  Google Scholar 

  • Jensen MH, Nielsen TG, Dahllöf I (2008) Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland. Aquat Toxicol 87:99–107

    Article  PubMed  CAS  Google Scholar 

  • Lindeque PK, Harris RP, Jones MB, Smerdon GR (1999) Simple molecular method to distinguish the identity of Calanus species (Copepoda : Calanoida) at any developmental stage. Mar Biol 133:91–96

    Article  CAS  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. In: Blaxter JHS, Southward AJ, Tyler PA (eds) Advances in marine biology, vol 33. Academic Press, pp 710

  • Morrison N, Bearden D, Bundy JG, Collette T, Currie F, Davey MP, Haigh NS, Hancock D, Jones OAH, Rochfort S, Sansone SA, Stys D, Teng Q, Field D, Viant MR (2007) Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3:203–210

    Article  CAS  Google Scholar 

  • Niehoff B, Madsen SD, Hansen BW, Nielsen TG (2002) Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Mar Biol 140:567–576

    Article  Google Scholar 

  • Parsons HM, Ludwig C, Gunther UL, Viant (2007) Improved classification accuracy in 1-and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinformatics 8:234

    Article  PubMed  Google Scholar 

  • Poynton HC, Taylor NS, Hicks J, Colson K, Chan SR, Clark C, Scanlan L, Loguinov AV, Vulpe C, Viant MR (2011) Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of daphnia magna to cadmium. Environ Sci Technol 45:3710–3717

    Article  PubMed  CAS  Google Scholar 

  • Savorani F, Tomasi G, Engelsen SB (2010) Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202:190–202

    Article  PubMed  CAS  Google Scholar 

  • Schock TB, Stancyk DA, Thibodeaux L, Burnett KG, Burnett LE, Boroujerdi AFB, Bearden DW (2010) Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics 6:250–262

    Article  CAS  Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2000) Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biol 23:510–516

    Article  Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2002) Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C-glacialis and C-finmarchicus from Arctic waters. Mar Ecol-Prog Ser 235:127–134

    Article  CAS  Google Scholar 

  • Singh SP, Kumari S, Rastogi RP, Singh KL, Sinha RP (2008) Mycosporine-like amino acids (MAAS): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian J Exp Biol 46:7–17

    PubMed  CAS  Google Scholar 

  • Soreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res Pt II 55:2225–2244

    Article  CAS  Google Scholar 

  • Swalethorp R, Kjellerup S, Dunweber M, Nielsen TG, Moller EF, Rysgaard S, Hansen BW (2011) Grazing, egg production, and biochemical evidence of differences in the life strategies of Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland. Mar Ecol-Prog Ser 429:125–144

    Article  Google Scholar 

  • Tachihara T, Ishizaki S, Ishikawa M, Kitahara T (2004) Studies on the volatile compounds of roasted spotted shrimp. Chem Biodivers 1:2024–2033

    Article  PubMed  CAS  Google Scholar 

  • Viant MR (2003) Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun 310:943–948

    Article  PubMed  CAS  Google Scholar 

  • Viant MR, Rosenblum ES, Tjeerdema RS (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 37:4982–4989

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was financed by the SINTEF internal fund (Konsernsatsning Calanomics) and the Research Council of Norway (Grant 196711/S40). The field expedition to Svalbard was financed by Svalbard Science Forum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Henrik Hansen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, B.H., Degnes, K., Øverjordet, I.B. et al. Metabolic fingerprinting of arctic copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus . Polar Biol 36, 1577–1586 (2013). https://doi.org/10.1007/s00300-013-1375-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1375-8

Keywords

Navigation