Skip to main content

Advertisement

Log in

Environmental control on the structure of echinoid assemblages in the Bellingshausen Sea (Antarctica)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Bellingshausen Sea is one of the most remote and least surveyed seas of the Southern Ocean, so that little was known about benthic communities and those factors that determine community structuring until recently. The present work aims at characterizing the structure and spatial distribution of echinoid assemblages in the Bellingshausen Sea, as well as identifying the environmental factors that determine assemblage structuring. Echinoids were collected at 32 stations using an Agassiz trawl, at depths of 86–3,304 m, during BENTART oceanographic expeditions led in 2003 and 2006. Sediment and bottom water properties were analysed using an USNEL-type box corer and a Neil Brown Instrument System Mark III CTD, respectively. Echinoids were found at all stations, except Peter I Island. Seventeen species were identified, representing 22 % of the echinoid species present in the Southern Ocean and increasing twofold the number of species recorded in the Bellingshausen Sea so far. The echinoid fauna is dominated by the very abundant species Sterechinus antarcticus. Depth is the key factor that determines the nature of echinoid assemblages, which are mainly divided into the continental shelf, the slope and the deep-sea basin. In addition, sediment properties, namely redox values, organic matter and mud content, best match species dispersion on the shelf. Sediment properties affect echinoid distribution depending on species food range and feeding strategy. As it might be expected, sediment properties more strongly influence specialist feeders (Schizasteridae and Cidaridae) than generalists (Echinidae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldea C, Olabarria C, Troncoso JS (2008) Bathymetric zonation and diversity gradient of gastropods and bivalves in West Antarctica from the South Shetland Islands to the Bellingshausen Sea. Deep Sea Res I 55:350–368

    Article  Google Scholar 

  • Arnaud PM, Lopez CM, Olaso I, Ramil F, Ramos-Espla AA, Ramos A (1998) Semi-quantitative study of macrobenthic fauna in the region of the South Shetland Islands and the Antarctic Peninsula. Polar Biol 19:160–166

    Article  Google Scholar 

  • Bale AJ, Kenny AJ (2005) Sediment analysis and seabed characterisation. In: Eleftheriou A, McIntyre A (eds) Methods for the study of marine benthos. Blackwell, Oxford, pp 43–86

    Chapter  Google Scholar 

  • Barnes DKA, Brockington S (2003) Zoobenthic diversity, biomass and abundance at Adelaide Island, Antarctica. Mar Ecol Prog Ser 249:145–155

    Article  Google Scholar 

  • Baroni-Urbani C, Buser MW (1976) Similarity of binary data. Syst Zool 25:251–259

    Article  Google Scholar 

  • Barry JP, Grebmeier JM, Smith J, Dunbar RB (2003) Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea, pp 327–354

  • Bowden DA (2005) Quantitative characterization of shallow marine benthic assemblages at Ryder Bay, Adelaide Island, Antarctica. Mar Biol 146:1235–1249

    Article  Google Scholar 

  • Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007) The biodiversity of the deep Southern Ocean benthos. Philos Trans R Soc Lond B 362:39–66

    Article  CAS  Google Scholar 

  • Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope, distribution, abundance and biomass. Polar Biol 11:227–232

    Article  Google Scholar 

  • Carter SJB, Hunter JR (1994) The physical oceanographic effects of jarosite dumping at sea. CSIRO Div Oceanogr Rep OMR-66/42

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  • David B, Choné T, Mooi R, De Ridder C (2005) Antarctic echinoidea. Synopses of the Antarctic benthos. Koeltz Scientific Books, Königstein

    Google Scholar 

  • De Ridder C, Lawrence JM (1982) Food and feeding mechanisms: Echinoidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 57–115

    Google Scholar 

  • De Ridder C, David B, Larrain A (1992) Antarctic and Subantarctic echinoids from ‘‘Marion Dufresne’’ expeditions MD03, MD04, MD08 and from the Polarstern expedition Epos III. Bull Mus Natl Hist Nat Paris Ser 4(14A):405–441

    Google Scholar 

  • Eakin RR, Eastman JT, Matallanas J (2008) New species of Pogonophryne (Pisces, Artedidraconidae) from the Bellingshausen Sea, Antarctica. Polar Biol 31:1175–1179

    Article  Google Scholar 

  • Eleftheriou A, McIntyre A (2005) Methods for the study of marine benthos. Blackwell, Oxford

    Book  Google Scholar 

  • Fairbridge RW (1966) Fairbridge, the encyclopaedia of oceanography. Reinhold, New York

    Google Scholar 

  • García Raso JE, Manjón-Cabeza ME, Ramos A, Olaso I (2005) New record of Lithodidae (Crustacea Decapoda, Anomura) from the Antarctic (Bellingshausen Sea). Polar Biol 28:642–646

    Article  Google Scholar 

  • García Raso JE, García Muñoz JE, Manjón-Cabeza ME (2008) First record of Munidopsis albatrossae (Crustacea: Decapoda: Galatheidae) from Antarctic waters. Polar Biol 31:1281–1285

    Article  Google Scholar 

  • Grotov AS, Nechaev DA, Panteleev GG, Yaremchuk MI (1998) Large-scale circulation in the Bellingshausen and Amundsen seas as a variational inverse of climatological Data. J Geophys Res 103:13011–13022

    Article  Google Scholar 

  • Gutt J (2000) Some “driving forces” structuring communities of the sublittoral Antarctic macrobenthos. Antarct Sci 72:297–373

    Google Scholar 

  • Gutt J, Zurell D, Bracegridle TJ, Cheung W et al Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res (in press)

  • Gutt J, Schikan T (1998) Epibiotic relationships in the Antarctic benthos. Antarct Sci 10:398–405

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Rya PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hennebert M, Lees A (1991) Environmental gradients in carbonate sediments and rocks detected by correspondence analysis: examples from the recent of Norway and the Dinantian of southwest England. Sedimentology 38:623–642

    Article  Google Scholar 

  • Hétérier V, David B, De Ridder C, Rigaud T (2008) Ectosymbiosis, a critical factor in establishing local benthic biodiversity in Antarctic deep sea. Mar Ecol Prog Ser 364:67–76

    Article  Google Scholar 

  • Jacob U, Terpstra S, Brey T (2003) High-Antarctic regular sea urchins—the role of depth and feeding in niche separation. Polar Biol 26:99–104

    Google Scholar 

  • Kanazawa K (1992) Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology 35:733–750

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Linse K, Brandt A, Bohn JM, Danis B, De Broyer C, Ebbe B, Heterier V, Janussen D, López González PJ, Schüller M, Schwabe E, Thomson MRA (2007) Macro- and mega-benthic assemblages in the bathyal and abyssal Weddell Sea (Southern Ocean). Deep Sea Res II 54:1848–1863

    Article  Google Scholar 

  • Linse K, Walker LJ, Barnes DKA (2008) Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica. Antarct Sci 20:227–244

    Google Scholar 

  • Manjón-Cabeza ME, García Raso JE (1994) Structure and evolution of a decapod crustacean community from the coastal detritic bottoms of Barbate (Cádiz, Southern Spain). J Nat Hist 32:1619–1630

    Article  Google Scholar 

  • Manjón-Cabeza ME, Ramos A (2003) Ophiuroid community structure of the South Shetlands Islands and Antarctic Peninsula region. Polar Biol 26:691–699

    Article  Google Scholar 

  • Matallanas J, Olaso I (2007) Fishes of the Bellingshausen Sea and Peter I Island. Polar Biol 30:333–341

    Article  Google Scholar 

  • McCoy ED, Bell SS, Walters K (1986) Identifying biotic boundaries along environmental gradients. Ecology 68:749–759

    Article  Google Scholar 

  • Mora J (1980) Poblaciones bénticas de la Ría de Arousa. Dissertation, Universidad de Santiago de Compostela

  • Nichols D (1959) Mode of life and taxonomy in irregular sea-urchins. Syst Assoc Publ 3:61–80

    Google Scholar 

  • O’Loughlin PM, Manjón-Cabeza ME, Moya Ruiz F (2009) Antarctic holothuroids from the Bellingshausen Sea, with descriptions of new species (Echinodermata: Holothuroidea). Zootaxa 2016:1–16

    Google Scholar 

  • Olivero J, Real R, Vargas J (1998) Distribution of breeding, wintering, and resident water birds in Europe: biotic regions and macroclimate. Ornis Fenn 75:153–175

    Google Scholar 

  • Olivero J, Real R, Marquez AL (2011) Fuzzy chorotypes as a conceptual tool to improve insight into biogeographic patterns. Syst Biol 60(5):645–660

    Article  PubMed  Google Scholar 

  • Peck LS, Brockington S, Vanhove S, Beghyn M (1999) Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar Ecol Prog Ser 186:1–8

    Article  Google Scholar 

  • Ramos A (1995) Informe de la Campaña BENTART95. Inf Inst Esp Oceanogr MAPA, SPM, 23 pp

  • Rios P, Cristobo J (2007) A new species of Phorbas (Porifera: Poecilosclerida) from the Bellingshausen Sea, Antarctica. J Mar Biol Assoc UK 87:1485–1490

    Article  Google Scholar 

  • Sáiz-Salinas JI, García FJ, Manjón-Cabeza ME, Parapar-Vegas J, Peña-Cantero A, Saucède T, Troncoso JS, Ramos A (2008) Community structure and spatial distribution of benthic fauna in the Bellingshausen Sea (West Antarctica). Polar Biol 31:735–743

    Article  Google Scholar 

  • San Vicente C, Munilla T, Corbera J, Sorbe J-C, Ramos A (2009) Suprabenthic fauna from the Bellingshausen Sea and western Antarctic Peninsula: spatial distribution and community structure. Sci Mar 73(2):357–368

    Article  Google Scholar 

  • Saucède T (2008) Ecological diversity of Antarctic echinoids. In: Gutt J (ed) The expedition ANTARKTIS-XXIII/8 of the research vessel “Polarstern” in 2006/2007: ANT-XXIII/8; 23 November 2006–30 January 2007, Cape Town-Punta Arenas. Rep Polar Mar Res 569:37–41

    Google Scholar 

  • Scheuer C, Gohl K, Udintsev G (2006) Bottom-current control on sedimentation in the western Bellingshausen Sea, West Antarctica. Geol Mar Lett 26:90–101

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practices of numerical classification. Freeman, San Francisco

    Google Scholar 

  • Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar Biol 135:269–280

    Article  Google Scholar 

  • Ter Braak CJF, Prentice CI (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • Thrush S, Dayton P, Cattaneo-Vietti R, Chiantore M, Cummings V, Andrew N, Hawes I, Kim S, Kvitek R, Schwarz A-M (2006) Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Res II 53:959–971

    Article  Google Scholar 

  • Troncoso JS, Aldea C (2008) Macrobenthic mollusc assemblages and diversity in the West Antarctica from the South Shetland Islands to the Bellingshausen Sea. Polar Biol 31:1253–1265

    Article  Google Scholar 

  • Troncoso JS, Aldea C, García FJ, Arnaud PM, Ramos A (2007) Quantitative analysis of soft bottom molluscs in Bellingshausen Sea and Peter I Island. Polar Res 16:126–134

    Article  Google Scholar 

  • Turner DR, Owens NJP (1995) A biogeochemical study in the Bellingshausen Sea: overview of the STERNA 1992 expedition. Deep Sea Res II 42:907–932

    Article  CAS  Google Scholar 

  • Varela MM, Ramos-Esplá A (2008) Didemnum bentarti (Chordata: Tunicata) a new species from the Bellingshausen Sea, Antarctica. Polar Biol 31:209–213

    Article  Google Scholar 

  • Wentworth CKA (1922) A scale for grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

Download references

Acknowledgments

The ‘BENTART-03’ cruise was included within the Project REN2003-01881/ANT supported by the Spanish MCYT funds. The ‘BENTART-06’ cruise was funded by the Antarctic Program CGL2004-21066-E of the Spanish Government. TS was granted by the BIANZO I and II projects supported by the Belgian Science Policy (PADDII projects), and his work contributes to the Agence Nationale de la Recherche project ANTFLOCKS (grant ANR-07-BLAN-0213). The faunal studies were supported by the Spanish MCYT funds coming from the projects: REN2001-1074/ANT, REN2003—01881/ANT, GLC2004-01856/ANT and CGL2004-04684/ANT. We would like to express our thanks to the crew and UTM technicians of the RV ‘Hespérides’ for their help in collecting samples and to Sanjay Giany, native English teacher for the revision of the manuscript. Authors are greatly indebted to D. Pawson, B. Bluhm and J. Gutt for significantly improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eugenia Manjón-Cabeza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moya, F., Saucède, T. & Manjón-Cabeza, M.E. Environmental control on the structure of echinoid assemblages in the Bellingshausen Sea (Antarctica). Polar Biol 35, 1343–1357 (2012). https://doi.org/10.1007/s00300-012-1176-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1176-5

Keywords

Navigation