Skip to main content

Advertisement

Log in

Sub-lethal levels of waterborne petroleum may depress routine metabolism in polar cod Boreogadus saida (Lepechin, 1774)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Petroleum-related activities in Arctic waters are rapidly increasing parallel to the ongoing thinning of the Arctic sea ice. As part of a series of studies on petroleum-induced stress in polar cod Boreogadus saida, we tested the effects of acute (~60 min) and chronic (4 weeks) exposure to the water soluble fraction (WSF) of petroleum on whole body metabolism inferred from measurements of oxygen consumption rates. The exposure of polar cod to WSF leads to a statistically significant depression in routine metabolism in the order Control (0.260 mg O2 g fish−1 h−1; N = 6) > Chronic (0.191 mg O2 g fish−1 h−1; N = 6) > Acute (0.110 mg O2 g fish−1 h−1; N = 2), decoupling of routine metabolism and body mass but possibly also to a partial metabolic compensation after 4 weeks of exposure. The results are reviewed in context with similar studies on Antarctic and non-polar fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AMAP (2009) Arctic pollution. Arctic Monitoring and Assessment Programme, Oslo, Norway. ISBN 978-82-7971-050-9

  • Carls MG, Rice SD, Hose JE (1999) Sensivity of fish embryos to weathered crude oil: part I—low level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environ Toxicol Chem 18:481–493

    CAS  Google Scholar 

  • Carls MG, Marty GD, Hose JE (2002) Synthesis of the toxicological impacts of the Exxon Valdez oil spill on Pacific herring (Clupea pallasi) in Prince William Sound, Alaska, USA. Can J Aquat Sci 59:153–172

    Article  Google Scholar 

  • Christiansen JS (2000) Sex differences in ionoregulatory responses to dietary oil exposure in polar cod. J Fish Biol 57:167–170

    Article  CAS  Google Scholar 

  • Christiansen JS, George SG (1995) Contamination of food by crude oil affects food selection and growth performance, but not appetite, in an Arctic fish, the polar cod (Boreogadus saida). Polar Biol 15:277–281

    Google Scholar 

  • Christiansen JS, Chernitsky AG, Karamushko OV (1995) An Arctic teleost fish with a noticeably high body fluid osmolality: a note on the navaga, Eleginus navaga (Pallas, 1811), from the White Sea. Polar Biol 15:303–306

    Google Scholar 

  • Christiansen JS, Dalmo RA, Ingebrigtsen K (1996) Xenobiotic excretion in fish with aglomerular kidneys. Mar Ecol Prog Ser 136:303–304

    Article  Google Scholar 

  • Cohen A, Nugegoda D, Gagnon MM (2001) Metabolic responses of fish following exposure to two different oil spill remediation techniques. Ecotoxicol Environ Saf 48:306–310

    Article  CAS  PubMed  Google Scholar 

  • Correa M, Garcia HI (1990) Physiological responses of juvenile white mugil, Mugil curema, exposed to benzene. Bull Environ Contam Toxicol 44:428–434

    Article  CAS  PubMed  Google Scholar 

  • Davison W, Franklin CE, McKenzie JC, Dougan MCR (1992) The effect of acute exposure to the water soluble fraction of diesel fuel oil on survival and metabolic rate of an Antarctic fish (Pagothenia borchgrevinki). Comp Biochem Physiol 102C:185–188

    CAS  Google Scholar 

  • Davoodi F, Claireaux G (2007) Effects of exposure to petroleum hydrocarbons upon the metabolism of the common sole Solea solea. Mar Pollut Bull 54:928–934

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Cheng C-HC (2005) Antifreeze proteins and organismal freezing avoidance in polar fishes. In: Farrell AP, Steffensen JF (eds) The physiology of polar fishes. Academic Press, New York, pp 155–201

    Google Scholar 

  • di Prisco G, Verde C (2006) Predicting the impacts of climate change on the evolutionary adaptations of polar fish. Rev Environ Sci Biotechnol 5:309–321

    Article  CAS  Google Scholar 

  • George SG, Christiansen JS, Killie B, Wright J (1995) Dietary crude oil exposure during sexual maturation induces hepatic mixed function oxygenase (CYP1A) activity at very low environmental temperatures in polar cod Boreogadus saida. Mar Ecol Prog Ser 22:307–312

    Article  Google Scholar 

  • Grose PL, Mattson JS, Petersen H (1979) USNS Potomac oil spill, Melville Bay, Greenland, 5 August 1977. US Dept Com NOAA S/T 79-202

  • Hjermann DØ, Melsom A, Dingsør GE, Durant JM, Eikeset AM, Røed LP, Ottersen G, Storvik G, Stenseth NC (2007) Fish and oil in the Lofoten-Barents Sea system: synoptic review of the effect of oil spills on fish populations. Mar Ecol Prog Ser 339:283–299

    Article  CAS  Google Scholar 

  • Hose JE, Puffer HW (1984) Oxygen consumption of grunion (Leuresthes tenuis) embryos exposed to the petroleum hydrocarbon, benzo[a]pyrene. Environ Res 35:413–420

    Article  CAS  PubMed  Google Scholar 

  • Ingebrigtsen K, Christiansen JS, Lindhe Ö, Brandt I (2000) Disposition and cellular binding of 3H-benzo(a)pyrene at sub-zero temperatures: studies in an aglomerular Artic teleost fish—the polar cod (Boreogadus saida). Polar Biol 23:503–509

    Article  Google Scholar 

  • Jimenez BD, Stegeman JJ (1990) Detoxication enzymes as indicators of environmental stress on fish. Am Fish Soc Symp 8:67–79

    Google Scholar 

  • Jobling M (1994) Fish bioenergetics. Chapman and Hall, London

    Google Scholar 

  • Karamushko LI, Christiansen JS (2002) Aerobic scaling and resting metabolism in oviferous and post-spawning Barents Sea capelin Mallotus villosus villosus (Müller, 1776). J Exp Mar Biol Ecol 269:1–8

    Article  Google Scholar 

  • Kennedy CJ, Farrell AP (2006) Effects of exposure to the water-soluble fraction of crude oil on the swimming performance and the metabolic and ionic recovery postexercise in Pacific herring (Clupea pallasi). Environ Toxicol Chem 25:2715–2724

    Article  CAS  PubMed  Google Scholar 

  • Nahrgang J (2010) Biomarker responses in polar cod (Boreogadus saida)—application for petroleum monitoring in Arctic waters. PhD Thesis, University of Tromsø. ISBN 978-82-91086-83-5

  • Nahrgang J, Camus L, Gonzales P, Goksøyr A, Christiansen JS, Hop H (2009a) PAH biomarkers in polar cod (Boreogadus saida) exposed to benzo(a)pyrene. Aquat Toxicol 94:309–319

    Article  CAS  PubMed  Google Scholar 

  • Nahrgang J, Camus L, Carls MG, Gonzalez P, Jönsson M, Taban IC, Bechmann RK, Christiansen JS, Hop H (2009b) Biomarker responses in polar cod (Boreogadus saida) exposed to the water soluble fraction of crude oil. Aquat Toxicol (in press)

  • Ponomarenko VP (1968) Some data on the distribution and migration of polar cod in the seas of the Soviet Arctic. ICES Rapp P-v Réun 158:131–134

    Google Scholar 

  • Ponomarenko VP (2000) Fisheries and oil and gas production at the sea shelves of Russia: problems and goals. Oceanology 40:447–449

    Google Scholar 

  • Prasad MS (1987) Toxicity of crude oil to the metabolism of freshwater minor carp, Puntius sophore. Bull Environ Contam Toxicol 39:188–193

    Article  CAS  PubMed  Google Scholar 

  • Sæther B-S, Christiansen JS, Jobling M (1999) Gastrointestinal evacuation of particulate matter in polar cod Boreogadus saida. Mar Ecol Prog Ser 188:201–205

    Article  Google Scholar 

  • Schreck CB (1990) Physiological, behavioural, and performance indicators of stress. Am Fish Soc Symp 8:29–37

    Google Scholar 

  • Serigstad B, Adoff GR (1985) Effects of oil exposure on oxygen consumption of cod eggs and larvae. Mar Environ Res 17:266–268

    Article  CAS  Google Scholar 

  • Sharp JR, Fucik KW, Neff JM (1979) Physiological basis of differential sensitivity of fish embryonic stages to oil pollution. In: Vernberg WB, Calabrese A, Thurberg FP, Vernberg FJ (eds) Marine pollution: functional responses. Academic Press, New York, pp 85–108

    Google Scholar 

  • Steffensen JF, Bushnell PG, Schurmann H (1994) Oxygen consumption in four species of teleosts from Greenland: no evidence of metabolic cold adaptation. Polar Biol 14:49–54

    Article  Google Scholar 

  • Sunnanå K, Christiansen JS (1997) Kommersielt fiske på polartorsk—erfaringer og potensiale. Fiskeriforskning 1/1997. ISBN 82-7251-345-5

  • Tom M, Auslander M (2005) Transcript and protein environmental biomarkers in fish—a review. Chemosphere 59:155–162

    Article  CAS  PubMed  Google Scholar 

  • Walsh JE (2008) Climate of the Arctic environment. Ecol Appl 18:S3–S22

    Article  PubMed  Google Scholar 

  • Wartena EMM, Evenset A (1997) Effects of the Komi oil spill 1994 in the Nenets Okrug, north-west Russia. Akvaplan-niva report APN514.789.1

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  PubMed  Google Scholar 

  • Winberg GG (1956) Rate of metabolism and food requirements of fishes. Nauchn. Tr. Beloruss. Gos. Univ. Im. V.I. Lenina (Translated from Russian by Fish Res Board Can Transl Ser 194, 1960)

Download references

Acknowledgments

We thank Elin Austerheim, Kings Bay Marine Laboratory for technical assistance and Mark G. Carls for guidance on the petroleum columns and analyses of PAHs. Two referees provided useful comments. The study was approved by the National Animal Research Authority and supported by ConocoPhillips AS, Norway, and Akvaplan-niva AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen S. Christiansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, J.S., Karamushko, L.I. & Nahrgang, J. Sub-lethal levels of waterborne petroleum may depress routine metabolism in polar cod Boreogadus saida (Lepechin, 1774). Polar Biol 33, 1049–1055 (2010). https://doi.org/10.1007/s00300-010-0783-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0783-2

Keywords

Navigation