Skip to main content

Advertisement

Log in

Mitochondrial function in Antarctic notothenioid fishes that differ in the expression of oxygen-binding proteins

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

State III respiration rates were measured in mitochondria isolated from hearts of Antarctic notothenioid fishes that differ in the expression of hemoglobin (Hb) and myoglobin (Mb). Respiration rates were measured at temperatures between 2 and 40°C in Gobionotothen gibberifrons (+Hb/+Mb), Chaenocephalus aceratus (–Hb/–Mb) and Chionodraco rastrospinosus (–Hb/+Mb). Blood osmolarity was measured in all three species and physiological buffers prepared for isolating mitochondria and measuring respiration rates. Respiration rates were higher in mitochondria from G. gibberifrons compared to those from C. aceratus at 2°C, but were similar among all species at temperatures between 10 and 26°C. Respiration rates were significantly lower in icefishes at 35 and 40°C compared to G. gibberifrons. The respiratory control ratio of isolated mitochondria was lower in C. aceratus compared to G. gibberifrons at all temperatures below 35°C. At 35 and 40°C, mitochondria were uncoupled in all species. The Arrhenius break temperature of state III respiration was similar among all three species (30.5 ± 0.9°C) and higher than values previously reported for Antarctic notothenioids, likely due to the higher osmolarity of buffers used in this study. These results suggest that differences in mitochondrial structure, correlated with the expression of oxygen-binding proteins, minimally impact mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archer SD, Johnston IA (1991) Density of cristae and distribution of mitochondria in the slow muscle fibres of Antarctic fish. Physiol Zool 64:242–258

    Google Scholar 

  • Ballantyne JS, Moon TW (1986) Solute effects on mitochondria from an elasmobranch (Raja erinacea) and a teleost (Pseudopleuronectes americanus). J Exp Zool 239:319–328

    Article  PubMed  CAS  Google Scholar 

  • Baloyannis SJ, Costa V, Michmizos D (2004) Mitochondrial alterations in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 19:89–93. doi:10.1177/153331750401900205

    Article  PubMed  Google Scholar 

  • Boveris A (1977) Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78:67–82

    PubMed  CAS  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767. doi:10.1016/j.freeradbiomed.2004.05.034

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JH (1966) New measurements of oxygen solubility in pure and natural water. Limnol Oceanogr 11:264–277

    Article  CAS  Google Scholar 

  • Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44. doi:10.1152/ajpcell.00243.2006

    Article  PubMed  CAS  Google Scholar 

  • Conley KE, Christian KA, Hoppeler H, Weibel ER (1995) Heart mitochondrial properties and aerobic capacity are similarly related in a mammal and a reptile. J Exp Biol 198:739–746

    PubMed  CAS  Google Scholar 

  • Coulibaly I, Gahr SA, Palti Y, Yao J, Rexroad CE 3rd (2006) Genomic structure and expression of uncoupling protein 2 genes in rainbow trout (Oncorhynchus mykiss). BMC Genomics 7:203. doi:10.1186/1471-2164-7-203

  • Dahloff E, O’Brien J, Somero GN, Vetter RD (1991) Temperature effects on mitochondria from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. Physiol Zool 64:1490–1508

    Google Scholar 

  • Dawson TJ, Mifsud B, Raad MC, Webster KN (2004) Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals? J Exp Biol 207:2811–2821. doi:10.1242/jeb.01115

    Article  PubMed  Google Scholar 

  • Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci USA 101:11159–11164. doi:10.1073/pnas.0402026101

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS (2007) Mitochondrial uncoupling proteins–what is their physiological role? Free Radic Biol Med 43:1351–1371. doi:10.1016/j.freeradbiomed.2007.08.011

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  PubMed  CAS  Google Scholar 

  • Fruhwirth GO, Loidl A, Hermetter A (2007) Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta 1772:718–736

    PubMed  CAS  Google Scholar 

  • Gohil VM, Hayes P, Matsuyama S, Schagger H, Schlame M, Greenberg ML (2004) Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J Biol Chem 279:42612–42618. doi:10.1074/jbc.M402545200

    Article  PubMed  CAS  Google Scholar 

  • Heise K, Puntarulo S, Portner HO, Abele D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Physiol C Toxicol Pharmacol 134:79–90. doi:10.1016/S1532-0456(02)00212-0

    Article  PubMed  CAS  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Portner HO (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J Exp Biol 209:353–363. doi:10.1242/jeb.01977

    Article  PubMed  CAS  Google Scholar 

  • Jastroch M, Wuertz S, Kloas W, Klingenspor M (2005) Uncoupling protein 1 in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis. Physiol Genomics 22:150–156. doi:10.1152/physiolgenomics.00070.2005

    Article  PubMed  CAS  Google Scholar 

  • Johnston II, Calvo J, Guderley YH (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    PubMed  CAS  Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165. doi:10.1242/jeb.02628

    Article  PubMed  CAS  Google Scholar 

  • Logue JA, de Vries AL, Fodor E, Cossins AR (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol 203:2105–2115

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Nickerson DM, Facey DE, Grossman GD (1989) Estimating physiological thresholds with continuous two-phase regression. Physiol Zool 62:866–887

    Google Scholar 

  • O’Brien KM, Sidell BD (2000) The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol 203:1287–1297

    PubMed  Google Scholar 

  • O’Brien J, Dahloff E, Somero GN (1991) Thermal resistance of mitochondrial respiration: hydrophobic interactions of membrane proteins may limit thermal resistance. Physiol Zool 64:1509–1526

    Google Scholar 

  • Sidell BD (1998) Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature. J Exp Biol 201:1118–1127

    Google Scholar 

  • Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 209:1791–1802. doi:10.1242/jeb.02091

    Article  PubMed  CAS  Google Scholar 

  • Sommer AM, Portner HO (2004) Mitochondrial function in seasonal acclimatization versus latitudinal adaptation to cold in the lugworm Arenicola marina (L.). Physiol Biochem Zool 77:174–186. doi:10.1086/381468

    Article  PubMed  CAS  Google Scholar 

  • Stichel CC, Zhu XR, Bader V, Linnartz B, Schmidt S, Lubbert H (2007) Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Hum Mol Genet 16:2377–2393. doi:10.1093/hmg/ddm083

    Article  PubMed  CAS  Google Scholar 

  • Stuart JA, Harper JA, Brindle KM, Brand MD (1999) Uncoupling protein 2 from carp and zebrafish, ectothermic vertebrates. Biochim Biophys Acta 1413:50–54. doi:10.1016/S0005-2728(99)00081-X

    Article  PubMed  CAS  Google Scholar 

  • Suarez RK, Lighton JR, Brown GS, Mathieu-Costello O (1991) Mitochondrial respiration in hummingbird flight muscles. Proc Natl Acad Sci USA 88:4870–4873. doi:10.1073/pnas.88.11.4870

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi:10.1113/jphysiol.2003.049478

    Article  PubMed  CAS  Google Scholar 

  • Urschel MR, O’Brien KM (2008) High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. J Exp Biol 211:2638–2646. doi:10.1242/jeb.018598

    Article  PubMed  CAS  Google Scholar 

  • Weinstein RB, Somero GN (1998) Effects of temperature on mitochondrial function in the Antarctic fish Trematomus bernacchii. J Comp Physiol [B] 168:190–196. doi:10.1007/s003600050136

    CAS  Google Scholar 

  • Wodtke E (1981) Temperature adaptation of biological membranes Compensation of the molar activity of cytochrome c oxidase in the mitochondrial energy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio L.). Biochim Biophys Acta 640:710–720. doi:10.1016/0005-2736(81)90101-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of Dr. Bruce Sidell, who first pointed out to us the importance of considering blood osmolarity when working with isolated mitochondria. We also appreciate his insightful comments during the preparation of this manuscript. We would also like to thank the Master’s and crew of the ARSV Laurence M. Gould and the Raytheon Polar Services staff at the US Antarctic Research Station, Palmer Station for their outstanding assistance in the field. Support for this research was provided by a grant to K. O. from the Antarctic Organisms and Ecosystems Program in the Antarctic Sciences Division of the National Science Foundation (ANT 04-38778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin M. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urschel, M.R., O’Brien, K.M. Mitochondrial function in Antarctic notothenioid fishes that differ in the expression of oxygen-binding proteins. Polar Biol 32, 1323–1330 (2009). https://doi.org/10.1007/s00300-009-0629-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0629-y

Keywords

Navigation