Skip to main content
Log in

DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Bacterial community structures in soils collected from eight sites around Casey Station, Antarctica, were investigated using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rRNA gene fragments. Higher bacterial diversity was found in soils from protected or relatively low human-impacted sites in comparison to highly impacted sites. However, the highest diversity was detected in samples from Wilkes Tip, a former waste disposal site that has been undisturbed for the last 50 years. Comparison of community structure based on non-metric multidimensional scaling plots revealed that all sites, except the hydrocarbon-contaminated (oil spill) site, were clustered with a 45% similarity. A total of 23 partial 16S rRNA gene sequences were obtained from the excised DGGE bands, with the majority of the sequences closely related to those of the Cytophaga–Flexibacter–Bacteroides group. No significant correlation was established between environmental variables, including soil pH, electrical conductivity, carbon, nitrogen, water content and heavy metals, with bacterial diversity across the eight study sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aislabie JM, Chhour K, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056. doi:10.1016/j.soilbio.2006.02.018

    Article  CAS  Google Scholar 

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20. doi:10.1016/j.geoderma.2007.10.006

    Article  CAS  Google Scholar 

  • Beyer L, Bolter M (2000) Chemical and biological properties, formation, occurrence and classification of Spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39:95–119. doi:10.1016/S0341-8162(99)00089-2

    Article  CAS  Google Scholar 

  • Bolter M (1992) Environmental conditions and microbiological properties from soils and lichens from Antarctica (Casey Station, Wilkes Land). Polar Biol 11:591–599. doi:10.1007/BF00237953

    Article  Google Scholar 

  • Claridge GGC, Campbell IB, Powell HKJ, Amin ZH, Balks MR (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Ant Sci 7(1):9–14. doi:10.1017/S0954102095000034

    Article  Google Scholar 

  • Coenye T, Laevens S, Willems A, Ohlén M, Hannant W, Govan JRW, Gillis M, Falsen E, Vandamme P (2001) Burkholderia fungorum sp nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. J Syst Evol Microbiol 51:1099–1107

    CAS  Google Scholar 

  • Dorigo U, Volatier L, Humbert JF (2005) Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Res 39:2207–2218. doi:10.1016/j.watres.2005.04.007

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317. doi:10.1007/BF02013274

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackerbrandt E, Goodfellow M (eds) Nucliec acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Hinojosa MB, Carreira JA, García-Ruíz R, Dick RP (2005) Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. J Environ Qual 34:1789–1800. doi:10.2134/jeq2004.0470

    Article  PubMed  CAS  Google Scholar 

  • Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco RF (1999) Microbial biomass and activity in lead-contaminated soil. Appl Environ Microbiol 65(5):2256–2259

    PubMed  CAS  Google Scholar 

  • Li S, Xiao X, Yin X, Wang F (2006) Bacterial community along a historic lake sediment core of Ardley Island, West Antarctica. Extremophiles 10:461–467. doi:10.1007/s00792-006-0523-2

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322. doi:10.1016/S1369-5274(99)80055-1

    Article  PubMed  CAS  Google Scholar 

  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6(3):274–287. doi:10.1111/j.1462-2920.2004.00568.x

    Article  PubMed  Google Scholar 

  • Pearce DA (2003) Bacterioplankton community structure in a Maritime Antarctic oligotrophic lake during period of Holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hydridization (FISH). Microb Ecol 46:92–105. doi:10.1007/s00248-002-2039-3

    Article  PubMed  CAS  Google Scholar 

  • Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145. doi:10.1016/S0168-6496(03)00135-1

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Snape I, Bowman JP, Thompson BAW, Stark JS, McCammon SA, Riddle MJ (2004) A comparison of the short term effects of diesel fuel and lubricant oils on Antarctic benthic microbial communities. J Exp Mar Biol Ecol 322:53–65. doi:10.1016/j.jembe.2005.02.005

    Article  CAS  Google Scholar 

  • Revill AT, Snape I, Lucieer A, Guille D (2007) Constraints on transport and weathering of petroleum contamination at Casey Station, Antarctica. Cold Regions Sci Technol 48:154–167

    Article  Google Scholar 

  • Roser DJ, Seppelt RD, Ashbolt N (1993) Microbiology of ornithogenic soils from the windmill islands, budd coast, continental Antarctica: Microbial biomass distribution. Soil Biol Biochem 25(2):165–175. doi:10.1016/0038-0717(93)90023-5

    Article  Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer CEGR, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194. doi:10.1016/j.marpolbul.2004.10.009

    Article  PubMed  CAS  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155. doi:10.1016/j.femsec.2004.11.007

    Article  PubMed  CAS  Google Scholar 

  • Scouller RC, Snape I, Stark JS, Gore DB (2006) Evaluation of geochemical methods for discrimination of metal contamination in Antarctic marine sediments: a case study from Casey Station. Chemosphere 65:294–309. doi:10.1016/j.chemosphere.2006.02.062

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53:1479–1483. doi:10.1099/ijs.0.02285-0

    Article  PubMed  CAS  Google Scholar 

  • Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore JB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57:491–504. doi:10.1016/j.chemosphere.2004.05.042

    Article  PubMed  CAS  Google Scholar 

  • Snape I, Ferguson SH, Harvey PM, Riddle MJ (2006) Investigation of evaporation and biodegradation of fuel spills in Antarctica: II—Extent of natural attenuation at Casey Station. Chemosphere 63:89–98. doi:10.1016/j.chemosphere.2005.07.040

    Article  PubMed  CAS  Google Scholar 

  • Stark JS (2000) The distribution and abundance of soft-sediment macrobenthos around Casey Station, East Antarctica. Polar Biol 23:840–850. doi:10.1007/s003000000162

    Article  Google Scholar 

  • Stark JS, Riddle MJ, Snape I, Scouller RC (2003) Human impacts in Antartic marine soft-sediment assemblages: correlations between multivariate biological patterns and environmental variables at Casey Station. Estuar Coast Shelf Sci 56:717–734. doi:10.1016/S0272-7714(02)00291-3

    Article  CAS  Google Scholar 

  • Stark JS, Snape I, Riddle MJ, Stark SC (2005) Constraints on spatial variability in soft-sediment communities affected by contamination from an Antarctic waste disposal site. Mar Pollut Bull 50:276–290. doi:10.1016/j.marpolbul.2004.10.015

    Article  PubMed  CAS  Google Scholar 

  • Thangaraj K, Kapley A, Purohit HJ (2008) Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds. Bioresour Technol 99:2488–2494. doi:10.1016/j.biortech.2007.04.053

    Article  PubMed  CAS  Google Scholar 

  • Townsend AT, Snape I (2008) Multiple Pb sources in marine sediments near the Australian Antarctic Station, Casey. Sci Total Environ 389:466–474. doi:10.1016/j.scitotenv.2007.09.022

    Article  PubMed  CAS  Google Scholar 

  • Wasley J (2004) The effect of climate change on Antarctic terrestrial flora. Ph.D. thesis, University of Wollongong

  • Webster G, Embley M, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of proteobacterial ammonia oxidizer Populations. Appl Environ Microbiol 68:20–30. doi:10.1128/AEM.68.1.20-30.2002

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Newberry GJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55:155–164. doi:10.1016/S0167-7012(03)00140-4

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Li M, You Z, Wang F (2007) Bacterial communities inside and in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica. Antarct Sci 19:11–16. doi:10.1017/S095410200700003X

    Article  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451. doi:10.1111/j.1574-6941.2006.00200.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted under the auspices of the Malaysian Antarctic Research Programme, which is governed by the Academy of Sciences Malaysia. It was funded by the Ministry of Science, Technology and Innovation and the University of Malaya (PPP: PS063-2007B). The Australian Antarctic Division supported the expedition to Casey Station where field guidance and laboratory facilities were provided for collection and storage of soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Chong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, C.W., Annie Tan, G.Y., Wong, R.C.S. et al. DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica. Polar Biol 32, 853–860 (2009). https://doi.org/10.1007/s00300-009-0585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0585-6

Keywords

Navigation