Skip to main content
Log in

Natural succession of macroalgal-dominated epibenthic assemblages at different water depths and after transplantation from deep to shallow water on Spitsbergen

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the current study, we investigated the primary succession of seaweeds over different time periods at different water depths. Furthermore, we followed the succession of field-grown benthic communities of different successional age, developing on ceramic tiles, prior to and after transplantation from 8 to 0.5 m water depth. The transplantation simulated changes associated with the break up of sea-ice cover, e.g. light regime or wave exposure. For this purpose, we transplanted 12 and 21-month old communities, grown at 8 m water depth, together with a set of sterile tiles, onto rafts, floating in 0.5 m water depth. Our results describe for the first time the succession of macroalgal communities in the Arctic and give important insights into the effect of disturbance of differently aged communities. The primary succession at 0.5 m water depth was mainly driven by Bacillariophyta and filamentous green algae like Urospora sp. and Ulothrix implexa. Twelve-month old communities at 8 m water depth are dominated by members of the Ectocarpales (Phaeophyceae), like Pylaiella littoralis, P. varia, and Ectocarpus siliculosus and the green alga U. implexa, whereas the 21-month old community showed a higher cover of the green algal class Ulvophyceae and sessile invertebrates. After transplantation to near surface conditions, species composition of the communities changed, but this effect was differently strong between communities of different age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalga from the Arctic fjord. II. Pigment accumulation and biochemical defense systems against high light stress. Mar Biol 140(6):1087–1095

    Article  CAS  Google Scholar 

  • Albrecht AS (1998) Soft bottom versus hard rock: Community ecology of macroalgae on intertidal mussel beds in the Wadden Sea. J Exp Mar Biol Ecol 229(1):85–109

    Article  Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc Lond B Biol Sci 362:11–38

    Article  PubMed  Google Scholar 

  • Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Mar Syst 63(1–2):35–48

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444

    Article  CAS  Google Scholar 

  • Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalga from the Arctic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140(6):1097–1106

    Article  CAS  Google Scholar 

  • Campana G, Quartino ML, Yousif A, Wulff A (2008) Impacts of UV radiation and grazing on the structure of a subtidal benthic diatom assemblage in Antarctica. In: Wiencke C, Ferreyra G, Abele D, Marenssi S (eds) The Antarctic ecosystem of Potter Cove, King George Island (Isla 25 de Mayo). Synopsis of research performed 1999–2006 at the Dallmann Laboratory and Jubany Station. Rep Polar Mar Res 571, pp 302–310

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E Ltd, Plymouth, 190 pp

  • Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278

    Article  Google Scholar 

  • Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery 7(4):317–333

    Article  CAS  Google Scholar 

  • Connell JH, Keough MJ (1985) Disturbance and patch dynamics of subtidal marine animals on hard substrata. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp 125–151

    Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111(982):1119–1144

    Article  Google Scholar 

  • Dobretsov SV, Qian PY, Wahl M (2005) Effect of solar ultraviolet radiation on the formation of shallow, early successional biofouling communities in Hong Kong. Mar Ecol Prog Ser 290:55–65

    Article  Google Scholar 

  • Dunton KH, Reimnitz E, Schonberg S (1982) An Arctic kelp community in the Alaskan Beaufort Sea. Arctic 35:465–518

    Google Scholar 

  • Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14

    Article  Google Scholar 

  • Farrell TM (1991) Models and mechanisms of succession: An example from a rocky intertidal community. Ecol Monogr 61(1):95–113

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47

    Article  CAS  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV efffects on algal growth. Mar Biol 138(3):649–658

    Article  CAS  Google Scholar 

  • Hassol SJ (2005) ACIA—Der Arktis Klimareport. Convent Verlag GmbH, Hamburg

    Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21(1):167–208

    Article  Google Scholar 

  • Hung OS, Thiyagarajan V, Zhang R, Wu RSS, Qian PY (2007) Attachment of Balanus amphitrite larvae to biofilms originating from contrasting environments. Mar Ecol Prog Ser 333:229–242

    Article  CAS  Google Scholar 

  • Karsten U, Maier J, Garcia-Pichel F (1998) Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquat Microb Ecol 16:37–44

    Article  Google Scholar 

  • Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters. Oecologia 127:11–20

    Article  Google Scholar 

  • Karsten U, Schumann R, Rothe S, Jung I, Medlin L (2006) Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biol 29(6):476–486

    Article  Google Scholar 

  • Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262(5136):1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Khandeparker L, Anil AC, Raghukumar S (2006) Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS Microbiol Ecol 58(3):425–438

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, p 509

    Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31(2):181–199

    Article  Google Scholar 

  • Lam C, Harder T, Qian PY (2005) Growth conditions of benthic diatoms affect quality and quantity of extracellular polymeric larval settlement cues. Mar Ecol Prog Ser 294:109–116

    Article  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24(7):512–522

    Article  Google Scholar 

  • Littler MM (1980) Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Bot Mar 22:161–165

    Article  Google Scholar 

  • Lotze HK, Worm B, Molis M, Wahl M (2002) Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Mar Ecol Prog Ser 243:57–66

    Article  Google Scholar 

  • Lüder UH, Roleda MY, Wiencke C (2008) Impact of ultraviolet radiation on photosynthesis, DNA, cell structure and germination, and the role of phlorotannins as UV-protecting substances in zoospores of Laminaria digitata (Laminariales, Phaeophyta). Polar Biol (submitted)

  • McMahon KW, Ambrose WG Jr, Johnson BJ, Sun M-Y, Lopez GR, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar Ecol Prog Ser 310:1–14

    Article  Google Scholar 

  • Molis M, Wahl M (2004) Transient effects of solar ultraviolet radiation on the diversity and structure of a field-grown eplibenthic community at Luderitz, Namibia. J Exp Mar Biol Ecol 302(1):51–62

    Article  Google Scholar 

  • Newell RC, Seiderer LJ, Hitchcock DR (1998) The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. Oceoanogr Mar Biol Annu Rev 36:127–178

    Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Annu Rev 30:273–335

    Google Scholar 

  • Piepenburg D (2005) Recent research on Arctic benthos: common notions need to be revised. Polar Biol 28(10):733–755

    Article  Google Scholar 

  • Raimondi PT (1988) Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology 69(2):400–407

    Article  Google Scholar 

  • Roleda MY (2006) Effects of ultraviolet radiation on early life stages of cold temperate and Arctic macroalgae: implications for recruitment and vertical depth distribution. Alfred Wegener Institute for Polar and Marine Science, Bremerhaven, p 176

    Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006a) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88(3):311–322

    Article  PubMed  CAS  Google Scholar 

  • Roleda MY, Wiencke C, Lüder UH (2006b) Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage and germination in zoospores of Arctic Saccorhiza dermatodea. J Exp Bot 57(14):3847–3856

    Article  PubMed  CAS  Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Svendsen H, Beszczynska-Moeller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Oerbaeck JB, Bischof K, Papucci C, Zajaczkowski M, Attolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analyses of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Vinebrooke RD, Leavitt PR (1999) Differential Responses of Littoral Communities to Ultraviolet Radiation in an Alpine Lake. Ecology 80(1):223–237

    Article  Google Scholar 

  • Vinogradova KL (1995) The checklist of the marine algae from Spitsbergen. Bot Z 80:50–61

    Google Scholar 

  • Wahl M, Molis M, Davis A, Dobretsov S, Dürr ST, Johansson J, Kinley J, Kirugara D, Langer M, Lotze HK, Thiel M, Thomason J, Worm B, Zeevi Ben-Yosef D (2004) UVR effects that come and go: a global comparison of marine benthic community level impacts. Glob Change Biol 10(12):1962–1972

    Article  Google Scholar 

  • Weslawski JM, Wiktor J, Zajaczkowski M, Swerpel S (1993) Intertidal zone of Svalbard. 1. Macroorganism distribution and biomass. Polar Biol 13(2):73–79

    Article  Google Scholar 

  • Wethey D (1986) Ranking of settlement cues by barnacle larvae—influence of surface contour. Bull Mar Sci 39(2):393–400

    Google Scholar 

  • Weykam G, Gomez I, Wiencke C, Iken K, Kloeser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204(1–2):1–22

    Article  Google Scholar 

  • Weykam G, Thomas DN, Wiencke C (1997) Growth and photosynthesis of the Arctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia 36(5):395–405

    Google Scholar 

  • Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991–2003. Ber Polarforsch Meeresforsch 492, pp 55–62

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6(1–3):95–126

    Article  Google Scholar 

  • Wulff A, Zacher K (2008) Short-term UV effects on the photosynthesis of Antarctic benthic diatoms. In: Wiencke C, Ferreyra G, Abele D, Marenssi S (eds) The Antarctic ecosystem of Potter Cove, King George Island (Isla 25 de Mayo). Synopsis of research performed 1999–2006 at the Dallmann Laboratory and Jubany Station. Rep Polar Mar Res 571, pp 263–269

  • Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C (2007) Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biol 13(6):1201–1215

    Article  Google Scholar 

Download references

Acknowledgments

This work was part of the diploma thesis of the first author and has been carried out at the Ny Ålesund International Research and Monitory Facility. The authors thank the German scientific diving crew under the leadership of Max Schwanitz: Claudia Daniel, Peter Leopold, and Michael Tessmann for assistance in the field, as well as the Koldewey Station team Rainer Vockenroth, Kai Marholdt, and Cedric Couret for support. Thank to Betti Saier, for assistance in the sampling, conducted in 2005. Thank to Ruth Müller for assistance in measuring the environmental data during the experimental time. Thanks for help in identification questions to Mara Schmiing, Jana Wölfel, Ulf Karsten, and Margaret Clayton. We gratefully acknowledge financial support by the AWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Fricke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, A., Molis, M., Wiencke, C. et al. Natural succession of macroalgal-dominated epibenthic assemblages at different water depths and after transplantation from deep to shallow water on Spitsbergen. Polar Biol 31, 1191–1203 (2008). https://doi.org/10.1007/s00300-008-0458-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0458-4

Keywords

Navigation