Skip to main content
Log in

Top-down control on plankton components in an Antarctic pond: experimental approach to the study of low-complexity food webs

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In order to address the top-down effect on the different phytoplankton size-fractions and ciliates, a survey at microcosm scale was conducted in a hypertrophic Antarctic pond, testing the hypotheses that (1) the picophytoplankton is regulated by a top-down control exerted by organisms of the bigger size-fractions, and (2) the nanoplankton fraction (algae and ciliates) is not regulated by a top-down control exerted by the microplankton. The treatments enclosed pond water that was filtered to obtain the different plankton sizes: (a) through 55 μm, (b) 20 μm, and (c) 3 μm pore size filters. The variation in the net growth rate (k′) of the phytoplankton size-fractions and ciliates was analysed after 4 days. The results determined a significant difference (P<0.011) in the k′ value of the picophytoplankton when nano and micro-sized fractions where removed. Conversely, nanophytoplankton and nanociliates were not affected by the removal of bigger size-fractions. We suggest that in this pond the top-down control of the picophytoplankton is relevant, and that the grazing impact is not a key factor in the regulation of the nano-sized (algae and ciliates) plankton components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600

    CAS  Google Scholar 

  • Allende L (2004) Estructura de las fracciones de fitoplancton de lagos antárticos de Bahía Esperanza con estado trófico contrastante. Variaciones estivales e interanuales, e interacciones con otros componentes planctónicos. PhD thesis, Universidad de Buenos Aires

  • Almada P, Allende L, Tell G, Izaguirre I (2004) Experimental evidence of the grazing impact of Boeckella poppei on phytoplankton in a maritime Antartic lake. Polar Biol 28:39–46

    Google Scholar 

  • Andreoli C, Scarabel LR, Grassi C, Dalla Vecchia F, Spini S, Tolomio C, Rascio N, Moro I, Maseiro L (1992) The photoautotrophic picoplankton of Terra Nova Bay and some lakes of Northen Victoria Land (Antarctica). In: Proceedings of the 2nd Meeting on Antarctic Biology, p 55–65

  • Burns CW, Schallenberg M (1996) Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J Plankton Res 18:683–714

    Article  Google Scholar 

  • Butler HG (1999) Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J Plankton Res 21:2393–2419

    Article  Google Scholar 

  • Butler HG, Matthew GE, Ellis-Evans JC (2000) Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshw Biol 43:245–230

    Article  Google Scholar 

  • Callieri C, Pinolini ML (1995) Picoplankton in Lake Maggiore, Italy. Int Rev Gesamten Hydrobiol 80:491–501

    Article  Google Scholar 

  • Drakare S, Blomqvist P, Bergström A-K, Jansson M (2003) Relationships between picoplankton and environmental variables in lakes along gradient of water colour and nutrient content. Freshw Biol 48:729–740

    Article  Google Scholar 

  • Ellis-Evans JC (1991) Numbers and activity of bacterio- and phytoplankton in contrasting maritime Antarctic lakes. Verh Internat Verein Limnol 24:1149–1154

    Google Scholar 

  • Ellis-Evans JC (1996) Microbial biodiversity and function in Antarctic freshwater ecosystems. Biodiversity Conserv 5:1395–1434

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa. In: Brock TD (ed) Ecology of protozoa: the biology of free-living phagotrophic protists. Springer, Berlin Heidelberg New York, pp 197

    Google Scholar 

  • Hansson L-A (1992) The role of food chain composition and nutrient availability in shaping algal biomass development. Ecology 73:241–247

    Article  Google Scholar 

  • Hansson L-A, Tranvik LJ (1996) Quantification of invertebrate predation and herbivory in food chains of low complexity. Oecologia 108:542–551

    Article  Google Scholar 

  • Hawes I (1985) Factors controlling phytoplankton populations in Maritime Antartic lakes. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 245–252

    Google Scholar 

  • Hawes I (1990) Eutrophication and vegetation development in maritime Antarctic lakes. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin Heidelberg New York, pp 83–90

    Google Scholar 

  • Hulot FD, Morin PJ, Loreau M (2001) Interactions between algae and the microbial loop in experimental microcosms. Oikos 95:231–238

    Article  Google Scholar 

  • Izaguirre I, Vinocur A, Mataloni G, Pose M (1998) Comparison of phytoplankton communities in relation to trophic status in lakes from Hope Bay (Antartic Peninsula). Hydrobiologia 369/370:73–87

    Article  CAS  Google Scholar 

  • Izaguirre I, Mataloni G, Allende L, Vinocur A (2001) Summer fluctuations of microbial planktonic communities in a eutrophic lake—Cierva Point, Antarctica. J Plankton Res 23:1095–1109

    Article  CAS  Google Scholar 

  • Izaguirre I, Allende L, Marinone C (2003) Comparative study of the planktonic communities from lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J Plankton Res 25:1079–1097

    Article  Google Scholar 

  • Jasser I, Arvola L (2003) Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J Plankton Res 25:873–883

    Article  CAS  Google Scholar 

  • Jones VJ, Juggins S, Ellis-Evans JC 1993. The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes. Antarctic Sci., 5(4):339–348

    Article  Google Scholar 

  • Jürgens K, Jeppesen E (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22:1047–1070

    Article  Google Scholar 

  • Jürgens K, Arndt H, Zimmermann H (1997) Impact of metazoan and protozoan grazers on bacterial biomass distribution in microcosm experiments. Aquat Microb Ecol 12:131–138

    Article  Google Scholar 

  • Laybourn-Parry J (1997) The microbial loop in Antarctic lakes. Bakelma, Rotterdam

    Google Scholar 

  • Laybourn-Parry J, Ellis-Evans JC, Butler H (1996) Microbial dynamics during summer ice-loss phase in maritime Antarctic lakes. J Plankton Res 18:495–511

    Article  Google Scholar 

  • Laybourn-Parry J, Roberts EC, Bell EM (2000) Mixotrophy as a survival strategy among plankton protozoa in Antarctic lakes. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: model for a wider ecological understanding. The Caxton Press, Christchurch, pp 33–40

    Google Scholar 

  • Laybourn-Parry J, Hofer JS, Sommaruga R (2001) Viruses in the plankton of freshwater and saline Antarctic lakes. Freshw Biol 46:1279–1287

    Article  Google Scholar 

  • Llabrés M, Agustí S (2006) Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities. Limnol Oceanogr 51:21–29

    Article  Google Scholar 

  • Malinsky-Rushansky N, Berman T, Berner T, Yacobi YZ, Dubinsky Z (2002) Physiological characteristics of picophytoplankton, isolated from Lake Kinneret: responses to light and temperature. J Plankton Res 24:1173–1183

    Article  CAS  Google Scholar 

  • Ooms-Wilms AL (1997) Are bacteria an important source for rotifers in eutrophic lakes? J Plankton Res 19:1125–1141

    Article  Google Scholar 

  • Pace ML, Funke E (1991) Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72:904–914

    Article  Google Scholar 

  • Paffenhöfer G-A (1998) Heterotrophic protozoa and small metazoa: feeding rates and prey-consumer interactions. J Plankton Res 20:121–133

    Article  Google Scholar 

  • Pearce DA, Butler HG (2002) Short-term stability of the microbial community structure in a Maritime Antarctic Lake. Polar Biol 25:479–487

    Article  Google Scholar 

  • Pizarro H, Vinocur A, Tell G (2002) Periphyton on artificial substrata from three lakes of different trophic status at Hope Bay Antarctica. Polar Biol 25:169–179

    Google Scholar 

  • Pizarro H, Allende L, Bonaventura S (2004) Littoral epilithon of lentic water bodies at Hope Bay, Antarctica: biomass variables in relation to environmental conditions. Hydrobiologia 529:237–250

    Article  CAS  Google Scholar 

  • Priddle J, Hawes I, Ellis-Evans JC (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Article  Google Scholar 

  • Rankin LM, Franzmann PD, Michelin TA, Burton HR (1997) Seasonal distribution of picoCyanobacteria in Ace Lake, a marine-derived Antarctic lake. Cambridge University Press, Cambridge

    Google Scholar 

  • Reche I, Carrillo P, Lavandier P, Cruz-Pizarro L (1998) Comparative analysis of bacteria-phytoplankton relationship in two ecosystems of different trophic status. Verh Int Ver Limnol 26:1645–1649

    Google Scholar 

  • Roberts EC, Laybourn-Parry J, McKnight DM, Novarinos G (2000) Stratification dynamics of microbial loop communities in Lake Fryxell, Antarctica. Freshw Biol 44:649–661

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81:293–308

    Article  PubMed  CAS  Google Scholar 

  • Šimek K, Bobbková J, Macek M, Nedoma J, Psenner R (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species community level. Limnol Oceanogr 40:1077–1090

    Article  Google Scholar 

  • Sommaruga R, Hofer JS, Alonso-Sáez L, Gasol JM (2005) Differential sunlight sensitivity of picophytoplankton from surface Mediterranean coastal waters. Appl Environ Microbiol 71: 2154–2157

    Article  PubMed  CAS  Google Scholar 

  • Sorokin YI (1999) Aquatic microbial ecology. Backhuys, Leiden

    Google Scholar 

  • Suttle CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28:237–243

    Article  Google Scholar 

  • Takacs CD, Priscu JC (1998) Bacterioplankton dynamics in the McMurdo Valley Lakes, Antarctica: production and biomass loss over four seasons. Microb Ecol 36:239–250

    Article  PubMed  Google Scholar 

  • Tranvik LJ, Hansson L-A (1997) Predator regulation of aquatic microbial abundance in simple food webs of sub-Antarctic lakes. Oikos 79:347–356

    Article  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen Phytopankton Methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  • Van de Vijver B, Beyens L (1999) Freshwater diatoms from Ile de la Possession (Crozet Archipelago, sub-Antarctica): an ecological assessment. Polar Biol 22:178–188

    Article  Google Scholar 

  • Vinocur A, Pizarro H (1995) Periphyton flora of some lotic and lentic environments of Hope Bay (Antarctic Peninsula). Polar Biol 15:401–414

    Article  Google Scholar 

  • Vinocur A, Pizarro H (2000) Microbial mats of twenty-six lakes from Potter Peninsula, King George, Antarctica. Hydrobiologia 437:171–185

    Article  Google Scholar 

  • Wehr JD (1991) Nutrient and grazer-mediated effects on picoplankton and size structure in phytoplankton communities. Int Rev Gesamten Hydrobiol 76:643–656

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1992) Direct quantification of microbial propagules and spores. Scientific Committee on Antarctic Research, Cambridge

    Google Scholar 

  • Zar JH (1996) Comparing simple linear regression equations. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

This project was supported by the Instituto Antártico Argentino, the University of Buenos Aires and a grant from the Agencia Nacional de Promoción Científica y Tecnológica ANPCYT (BID 802/OC-AR-PICT 04540). We are grateful to the members of Esperanza Station (CAV 2002) for the logistic support, and to Dr. E. Ermolin and Mr. L. Cataldo for their cooperation in the field tasks. Thanks are due to Dr. I. Izaguirre and to two anonymous reviewers for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Allende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allende, L., Pizarro, H. Top-down control on plankton components in an Antarctic pond: experimental approach to the study of low-complexity food webs. Polar Biol 29, 893–901 (2006). https://doi.org/10.1007/s00300-006-0129-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0129-2

Keywords

Navigation