Skip to main content
Log in

Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We reveal the onset and dynamic tissue-specific cytokinin signaling domains and functional importance of auxin in the auxin–cytokinin interaction domains in shaping root architecture in the economically important rice plant.

Abstract

Plant hormones such as auxin and cytokinin are central regulators of root organogenesis. Typical in the grass species, the root system in rice is primarily composed of post-embryonic adventitious/crown roots (ARs/CRs). Antagonistic auxin–cytokinin activities mutually balance each other to ensure proper root development. Cytokinin has been shown to inhibit crown root initiation in rice; albeit, the responsive domains remain elusive during the initiation and outgrowth of crown root primordia (CRP). Here, we show the cytokinin response domains during various stages of CRP development. RNA–RNA in situ hybridization and protein immunohistochemistry studies of the reporter gene expressed under the cytokinin responsive synthetic promoter revealed detailed spatio-temporal cytokinin signaling domains in the developing CRP. Furthermore, rice lines genetically depleted for endogenous auxin in the cytokinin responsive domains provided insight into the functional importance of auxin signaling during crown root development. Thus, our study demonstrates the onset and dynamic tissue-specific cytokinin response and functional significance of auxin–cytokinin interaction during root architecture formation in rice, a model grass species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    Article  PubMed  CAS  Google Scholar 

  • Bielach A, Podlesáková K, Marhavy P, Duclercq J, Cuesta C, Müller B, Grunewald W, Tarkowski P, Benková E (2012) Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 24:3967–3981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bishopp A, Benková E, Helariutta Y (2011) Sending mixed messages: auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW, Werr W (2015) Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci 20:291–300

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Ramireddy E, Schmülling T (2015) Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis. J Exp Bot 66:4759–4768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coudert Y, Bès M, Van Anh LT, Pré M, Guiderdoni E, Gantet P (2011) Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice. BMC Genomics 12:387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dello Ioio R, Linhares FS, Sabatini S (2008) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11:23–27

    Article  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X et al (2008) Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Showk S, Ruonala R, Helariutta Y (2013) Crossing paths: cytokinin signalling and crosstalk. Development 140:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Fang J, Xu F, Wang W, Sun X (2014) Cytokinin oxidase/dehydrogenase 4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Phys 165:1035–1046

    Article  CAS  Google Scholar 

  • Garg T, Singh Z, Dwivedi AK, Varapparambathu V, Singh RS, Yadav M, Chandran D, Prasad K, Jain M, Yadav SR (2020) Genome-wide high resolution expression map and functions of key cell fate determinants reveal the dynamics of crown root development in rice. bioRxiv. https://doi.org/10.1101/2020.06.11.131565

    Article  Google Scholar 

  • Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L et al (2020) Synergistic on auxin and cytokinin 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun 11:2170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inukai Y, Miwa M, Nagato Y, Kitano H, Yamauchi A (2001) Characterization of rice mutants deficient in the formation of crown roots. Breeding Sci 51:123–129

    Article  CAS  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I et al (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell 17:1387–1396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H et al (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M (2003) Isolation and characterization of a rice WUSCHEL- type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441

    Article  PubMed  CAS  Google Scholar 

  • Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484

    Article  PubMed  CAS  Google Scholar 

  • Lakehal A, Bellini C (2019) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavenus J, Goh T, Roberts I, Guyomarch S, Lucas M, De Smet I et al (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S et al (2005) ARL1, a LOB- domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  CAS  Google Scholar 

  • Mai CD, Phung NT, To HT, Gonin M, Hoang GT, Nguyen KL et al (2014) Genes controlling root development in rice. Rice 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao C, He J, Liu L, Deng Q, Yao X, Liu C et al (2020) OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotech J 18:429–442

    Article  CAS  Google Scholar 

  • Meng F, Xiang D, Zhu J, Li Y, Mao C (2019) Molecular mechanisms of root development in rice. Rice 12:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2008) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25:213–221

    Article  Google Scholar 

  • Neogy A, Garg T, Kumar A, Dwivedi AK, Singh H, Singh U, Singh Z, Prasad K, Jain M, Yadav SR (2019) Genome-wide transcript profiling reveals an auxin-responsive transcription factor, OsAP2/ERF-40, promoting rice adventitious root development. Plant Cell Physiol 60:2343–2355

    Article  PubMed  CAS  Google Scholar 

  • Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18:459–467

    Article  PubMed  CAS  Google Scholar 

  • Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83–96

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Sriram P, Kumar SC, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290

    Article  PubMed  CAS  Google Scholar 

  • Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC et al (2009) Molecular genetics of rice root development. Rice 2:15–34

    Article  Google Scholar 

  • Reyes-Olalde JI, Zúñiga-Mayo VM, Marsch-Martínez N, de Folter S (2017) Synergistic relationship between auxin and cytokinin in the ovary and the participation of the transcription factor SPATULA. Plant Signal Behav 12:e1376158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate Response Locus JAR1 and several related arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37:471–483

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Sun H, Gu P, Liang Z, Chen X, Lou J, Xu G, Zhang Y (2017) A sensitive synthetic reporter for visualizing cytokinin signaling output in rice. Plant Methods 13:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav SR, Prasad K, Vijayraghavan U (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav SR, Khanday I, Majhi BB, Veluthambi K, Vijayraghavan U (2011) Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiol 52:2123–2135

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Li R, Xing J, Yan L, Wang R, Zhao Y (2018) The YUCCA-Auxin-WOX11 module controls crown root development in rice. Front Plant Sci 23:523

    Google Scholar 

  • Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Cheng S, Song Y, Huang Y, Zhou S, Liu X et al (2015) The interaction between ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell 27:2469–2483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–1075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Bruno Müller at the University of Zürich, Switzerland for kindly sharing TCSn-min35S::GFP-ER plasmid, and Prof. Usha Vijayraghavan, Indian Institute of Science, Bangalore, India, for sharing pRSET-TCSn-min35S::ER-GFP and pCAMBIA1380 OsM1::OsMGH3 plasmids.

Funding

This work was supported by Department of Biotechnology, Ministry of Science and Technology (DBT-IYBA), Government of India. Infrastructural facilities were provided by the Indian Institute of Technology, Roorkee. University Grant Commission (UGC), India is acknowledged to provide fellowships to A.N. and Indian Institute of Technology, Roorkee to Z.S. and K.K.K.M.

Author information

Authors and Affiliations

Authors

Contributions

A.N. designed and performed most of the experiments. Z.S. contributed in performing RNA in situ hybridization experiment with A.N., and K.K.K.M. contributed in generating and maintaining transgenic rice lines with A.N.. S.R.Y. conceived the project, designed all the experiments, analyzed data and wrote the manuscript together with AN.

Corresponding author

Correspondence to Shri Ram Yadav.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2020_2618_MOESM1_ESM.pdf

Supplementary file1 Supplementary Fig. 1: Immuno-histochemistry using the anti-GFP antibody in TCSn::GFP-ER lines (a and b) and wild-type (c). Supplementary Fig. 2: Effect of exogenous IAA treatment on wild-type rice seedlings. (a–d) Rice wild-type plants were grown in ½ MS medium supplemented with no IAA (a), with 10nM IAA (b), with 25nM IAA (c), and with 75nM IAA (d). Scale bar: 1 cm (a–d). Supplementary Fig. 3: Effect of exogenous IAA treatment on TCSn::OsMGH3 L#1. The number of CRs of TCSn::OsMGH3 L#1 (n=3) on the seventh day after germination is plotted as compared to wild-type (n=3). Two-tailed Student’s t-test determines significance, ns, not significant, * p-value <0.05 (PDF 408 kb)

Supplementary file2 Supplementary Table 1: The list of primers used in the study (PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neogy, A., Singh, Z., Mushahary, K.K.K. et al. Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development. Plant Cell Rep 40, 1367–1375 (2021). https://doi.org/10.1007/s00299-020-02618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02618-9

Keywords

Navigation