Skip to main content
Log in

Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Hypoxia enhances lignification of carrot root.

Abstract

Hypoxia stress was thought to be one of the major abiotic stresses that inhibiting the growth and development of higher plants. The genes encoding the plant alcohol dehydrogenase (ADH-P) were induced when suffering hypoxia. To investigate the impact of hypoxia on the carrot root growth, carrot plants were cultivated in the hydroponics with or without aeration. Morphological characteristics, anatomical structure, lignin content, and the expression profiles of DcADH-P genes and lignin biosynthesis-related genes were measured. Six DcADH-P genes were identified from the carrot genome. The expression profiles of only three (DcADH-P1, DcADH-P2, and DcADH-P3) genes could be detected and the other three (DcADH-P4, DcADH-P5, and DcADH-P6) could not be detected when carrot cultivated in the solution without aeration. In addition, carrot roots had more lignin content, aerenchyma and less fresh weight when cultivated in the solution without aeration. These results suggested that hypoxia could enhance the lignification and affect anatomical structure of the carrot root. However, the expression levels of the genes related to lignin biosynthesis were down-regulated under the hypoxia. The enhancement of lignification may be the consequence of the structure changes in the carrot root. Our work was potentially helpful for studying the effect of hypoxia on carrot growth and may provide useful information for carrot hydroponics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260

    PubMed  CAS  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  PubMed  CAS  Google Scholar 

  • Bacanamwo M, Purcell LC (1999) Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci 39:143–149

    Article  Google Scholar 

  • Bai T, Yin R, Li C, Ma F, Yue Z, Shu H (2011) Comparative analysis of endogenous hormones in leaves and roots of two contrasting Malus species in response to hypoxia stress. J Plant Growth Regul 30:119–127

    Article  CAS  Google Scholar 

  • Baxter-Burrell A, Chang R, Springer P, Bailey-Serres J (2003) Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression in Arabidopsis. Ann Bot 91:129–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Cai C, Xu C, Li X, Ferguson I, Chen K (2006) Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol Technol 40:163–169

    Article  CAS  Google Scholar 

  • Cavagnaro PF, Chung SM, Manin S, Yildiz M, Ali A, Alessandro MS, Iorizzo M, Senalik DA, Simon PW (2011) Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genom 12:386

    Article  CAS  Google Scholar 

  • Cervilla L, Rosales M, Rubio-Wilhelmi M, Sánchez-Rodríguez E, Blasco B, Ríos J, Romero L, Ruiz J (2009) Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Sci 176:545–552

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci 83:1408–1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2009) Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Comparisons of early transcriptome responses to low-oxygen environments in three dicotyledonous plant species. Plant Signal Behav 5:1006–1009

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa MA, Bedgar DL, Moinuddin SG, Kim KW, Cardenas CL, Cochrane FC, Shockey JM, Helms GL, Amakura Y, Takahashi H (2005) Characterization in vitro and in vivo of the putative multigene 4-coumarate: CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66:2072–2091

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy M, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LA, Knox JP (2012) Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation. Plant Physiol 158:642–653

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, He CJ, Morgan PW (1989) Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of Zea mays L. Plant Physiol 91:266–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2013) Pfam: the protein families database. Nucleic Acids Res 42:D222-D230

    PubMed Central  Google Scholar 

  • Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30-W38

    Article  PubMed Central  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia—is survival a balancing act? Trends Plant Sci 9:449–456

    Article  PubMed  CAS  Google Scholar 

  • Gabaldón T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nat Rev Genet 14:360–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  PubMed  CAS  Google Scholar 

  • Hickman G (2011) Greenhouse vegetable production statistics: a review of current data on the international production of vegetables in greenhouses. Cuesta Roble greenhouse consultants, Mariposa

    Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  PubMed  CAS  Google Scholar 

  • Ismond KP, Dolferus R, De Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132:1292–1302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia XL, Wang GL, Xiong F, Yu XR, Xu ZS, Wang F, Xiong AS (2015) De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep 5:8259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung H, Casler M (2006) Maize stem tissues: impact of development on cell wall degradability. Crop Sci 46:1801

    Article  CAS  Google Scholar 

  • Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:796–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204:277–287

    Article  CAS  Google Scholar 

  • Kimura M, Rodriguez-Amaya DB (2003) Carotenoid composition of hydroponic leafy vegetables. J Agric Food Chem 51:2603–2607

    Article  PubMed  CAS  Google Scholar 

  • Kürsteiner O, Dupuis I, Kuhlemeier C (2003) The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol 132:968–978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1:270–272

    Article  Google Scholar 

  • Lee D, Ellard M, Wanner LA, Davis KR, Douglas CJ (1995) The Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol Biol 28:871–884

    Article  PubMed  CAS  Google Scholar 

  • Morgan PW (1994) Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol 105:861–865

    Article  PubMed  PubMed Central  Google Scholar 

  • Moura JCMS., Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  PubMed  CAS  Google Scholar 

  • Müse G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P (1997) Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201:146–159

    Article  Google Scholar 

  • Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. N Phytol 190:472–487

    Article  CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. Q Rev Biol 54:507–543

    Google Scholar 

  • Ober ES, Sharp RE (1996) A microsensor for direct measurement of O2 partial pressure within plant tissues3. J Exp Bot 47:447–454

    Article  CAS  Google Scholar 

  • Park J, Yoon JH, Depuydt S, Oh JW, Jo Y, Kim K, Brown MT, Han T (2016) The sensitivity of an hydroponic lettuce root elongation bioassay to metals, phenol and wastewaters. Ecotoxicol Environ Saf 126:147–153

    Article  PubMed  CAS  Google Scholar 

  • Peng HP, Chan CS, Shih MC, Yang SF (2001) Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 126:742–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratsch H (1983) Interlaboratory root elongation testing of toxic substances on selected plant species. Environ Prot Agency Carvallis Environ Res Lab Coevallis OR EPA 600:3–85

    Google Scholar 

  • Rozema J, van de Staaij J, Björn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schussler EE, Longstreth DJ (1996) Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). Am J Bot 83:1266–1273

    Article  Google Scholar 

  • Shen H, Fu C, Xiao X, Ray T, Tang Y, Wang Z, Chen F (2009) Developmental control of lignification in stems of lowland switchgrass variety Alamo and the effects on saccharification efficiency. BioEnergy Res 2:233–245

    Article  Google Scholar 

  • Suralta RR, Yamauchi A (2008) Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ Exp Bot 64:75–82

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, Xiong AS (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10:e0117569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS (2015) Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. Hortic Res 2:e0134166

    Google Scholar 

  • Wang GL, Huang Y, Zhang XY, Xu ZS, Wang F, Xiong AS (2016) Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots. Plant Cell Rep 35:1743–1755

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang GL, Hou XL, Li MY, Xu ZS, Xiong AS (2018) The genome sequence of ‘Kurodagosun’, a major carrot variety in Japan and China, reveals insights into biological research and carrot breeding. Mol Genet Genom 2018:1–11

    Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. N Phytol 187:273–285

    Article  CAS  Google Scholar 

  • Xu ZS, Tan HW, Wang F, Hou XL, Xiong AS (2014a) CarrotDB: a genomic and transcriptomic database for carrot. Database J Biol Databases Curation 2014:1229–1245

    Google Scholar 

  • Xu ZS, Ying H, Feng W, Xiong S, Wang GL, Xiong AS (2014b) Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14:1–10

    Article  CAS  Google Scholar 

  • Yu JQ, Matsui Y (1993) Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Sci Plant Nutr 39:691–700

    Article  CAS  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the New Century Excellent Talents in University (NCET-11-0670); Jiangsu Natural Science Foundation (BK20130027); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Maike Petersen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, F., Wang, GL., Feng, K. et al. Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot. Plant Cell Rep 37, 1021–1032 (2018). https://doi.org/10.1007/s00299-018-2288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2288-3

Keywords

Navigation